Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental and Structural Analysis
3. Results and Discussion
3.1. Characterization
3.2. Dosage Effect on Chemical Properties
3.3. Structural Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication nutrient sources, composition, and consequences. Estuaries 2002, 2, 704–726. [Google Scholar] [CrossRef]
- Van Dolah, F.M. Marine algal toxins: Origins, health effects, and their increased occurrence. Environ. Health Perspect. 2000, 108, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Pearl, H.W.; Gardner, W.S.; McCarthy, M.J.; Peierls, B.L.; Wilhelm, S.W. Algal blooms: Noteworthy nitrogen. Science 2014, 346, 175. [Google Scholar] [CrossRef] [PubMed]
- Falconer, I.R. An overview of problems caused by toxic blue–green algae (cyanobacteria) in drinking and recreational water. Environ. Toxicol. 1998, 14, 5–12. [Google Scholar] [CrossRef]
- Guo, L. Doing battle with the green monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.; Georgic, W.; Klaiber, H.A. Reeling in the damages: Harmful algal blooms’ impact on Lake Erie’s recreational fishing industry. J. Environ. Manag. 2017, 199, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Fu, J. Issue of Cyanobacteria Blooms in Taihu Lake, China. J. Environ. Sci. Manag. 2016, 19, 99–109. [Google Scholar]
- Stefanie, L.; Alexandre, M.A.; Rob, R.; Arwyn, E.; Rob, J.N.; Fiona, G.; Liane, G.B. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 2016, 7, 11968. [Google Scholar] [Green Version]
- Alexandra, W. Algae speed up Greenland ice melt. Nature 2016, 535, 336. [Google Scholar]
- Abton, A.; Teoh, P.L.; Mohd-Shaleh, S.R.; Mohammad-Noor, N. First occurrence of Cochlodinium blooms in Sabah, Malaysia. Harmful Algae 2008, 7, 331–336. [Google Scholar]
- Chen, C.Y.; Pickhardt, P.C.; Xu, M.Q.; Folt, C.L. Mercury and arsenic bioaccumulation and eutrophication in Baiyangdian Lake, China. Water Air Soil Pollut. 2008, 190, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Park, M.G.; Kim, S.; Shim, E.Y.; Yih, W.; Coats, D.W. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae 2013, 30, S62–S74. [Google Scholar] [CrossRef]
- Chekli, L.; Eripret, C.; Park, S.H.; Tabatabai, S.A.A.; Vronska, O.; Tamburic, B.; Kim, J.H.; Shon, H.K. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water. Sep. Purif. Technol. 2017, 175, 99–106. [Google Scholar] [CrossRef]
- Pierce, R.H.; Henry, M.S.; Highan, C.J.; Blum, P.; Sengco, M.R.; Anderson, D.M. Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 2004, 3, 141–148. [Google Scholar] [CrossRef]
- Kwak, D.H.; Kim, S.J.; Jung, H.J.; Won, C.H.; Kwon, S.B.; Ahn, H.W.; Lee, J.W. Removal of clay and blue-green algae particles through zeta potential and particle size distribution in the dissolved air flotation process. Water Sci. Technol. Water Supply 2006, 6, 95–103. [Google Scholar]
- Shi, H.X.; Qu, J.H.; Liu, H.J.; Mu, Y.L.; Xiao, K.T.; Wang, L. Effect of ultrasonic irradiation on the coagulation and inactivation of Microcystis. J. Water Supply Res. Technol.-Aqua 2008, 57, 101–108. [Google Scholar] [CrossRef]
- Auvray, F.; van Hullebusch, E.D.; Deluchat, V.; Baudu, M. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium. Water Res. 2006, 40, 2713–2716. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Ampunan, V.; Lee, S.; Chung, E. Chemical behavior of different species of phosphorus in coagulation. Chemosphere 2016, 144, 2264–2269. [Google Scholar] [CrossRef] [PubMed]
- Wedi, D.; Konig, E. Elimination of nitrogen and phosphorous from sludge liquor. Water Sci. Technol. 1993, 28, 283–287. [Google Scholar]
- Montalve, S.J.; Guerrero, L.E.; Milan, Z.; Borja, R. Nitrogen and phosphorus removal using a novel integrated system of natural zeolite and lime. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, J.; Liu, J.; Wei, Q.; Li, G.; Huang, X. Algae separation from urban landscape water using a high density microbubble layer enhanced by micro-flocculation. Water Sci. Technol. 2014, 70, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Tan, W.; Wang, L.; Pan, G. Removal of Microcystis aeruginosa using cationic starch modified soils. Water Res. 2016, 97, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, H.; Pan, G. Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil. J. Environ. Sci. 2015, 28, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sehaqui, C.; Mautner, A.; de Larraya, U.P.; Pfenninger, N.; Tingaut, P.; Zimmermann, T. Cationic cellulose nanofibers from waste pulp residues and theirnitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr. Polym. 2016, 135, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, G.A. Universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ. Sci. Technol. 2013, 47, 4555–4562. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Desai, M.K.; Wang, P.; Valiyaveettil, S. Successive extraction of As(V), Cu(II), and P(V) ions from water using surface modified ghee residue protein. ACS Sustain. Chem. Eng. 2017, 5, 3742–3750. [Google Scholar]
- Boonamnuayvitaya, V.; Chaiya, C.Y.; Tanthapanichakoon, W.; Jarudilokkul, S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep. Purif. Technol. 2004, 35, 11–22. [Google Scholar] [CrossRef]
- Ferhat, M.; Kadouche, S.; Drouiche, N.; Messaoudi, K.; Messaoudi, B.; Lounici, H. Competitive adsorption of toxic metals on bentonite and use of chitosan as flocculent coagulant to speed up the settling of generated clay suspensions. Chemosphere 2016, 165, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, C.; Thenepalli, T.; Han, C.; Ahn, J.W. Synthesis of aragonite-precipitated calcium carbonate from oyster shell waste via a carbonation process and its applications. Korean J. Chem. Eng. 2017, 34, 225–230. [Google Scholar] [CrossRef]
- Yoon, G.L.; Kim, B.T.; Kim, B.O.; Han, S.H. Chemical-mechanical characteristics of crushed oyster-shell. Waste Manag. 2003, 23, 825–834. [Google Scholar] [CrossRef]
- Qin, K.; Wang, T.H.; Huang, J.C.; Huang, C.H.; Hsieh, Y.K.; Wang, C.F.; Tan, C.S. Effect of distribution patterns of refractory overlayers on cyclic high temperature CO2 capture using waste oyster shell. RSC Adv. 2016, 6, 97739–97748. [Google Scholar] [CrossRef]
- Moon, D.H.; Cheong, K.H.; Koutsosphros, A.; Chang, Y.Y.; Hyun, S.; Ok, Y.S.; Park, J.H. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Tan, F.; Li, H.; Zhu, N.; He, M.; Zhu, Q.; Hu, G.; Wang, L.; Zhao, J. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J. Environ. Manag. 2017, 198, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Kinney, K.A.; Katz, L.E. Effect of CaCO3(S) nucleation modes on algae removal from alkaline water. Environ. Sci. Technol. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.H.; Choi, Y.H.; Ramakrishna, C.; Cheong, S.H.; Ahn, J.W. Use of calcined oyster shell powders as CO2 adsorbents in algae-containing water. J. Korean Ceram. Soc. 2016, 53, 429–434. [Google Scholar] [CrossRef]
- Monyethabeng, M.M.; Krügel, M. The effect of UV-C treatment on various spoilage microorganisms inoculated into Rooibos iced tea. LWT-Food Sci. Technol. 2016, 73, 419–424. [Google Scholar] [CrossRef]
- Gao, Y.; Cui, Y.; Xiong, W.; Li, X.; Wu, Q. Effect of UV-C on algal evolution and differences in growth rate, pigmentation and photosynthesis between prokaryotic and eukaryotic algae. Photochem. Photobiol. 2009, 85, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Safronova, T.V.; Knot’ko, A.V.; Shatalova, T.B.; Evdokimov, P.V.; Putlyaev, V.I.; Kostin, M.S. Calcium phosphate ceramic based on powder synthesized from a mixed-anionic solution. Biomaterials 2016, 73, 25–31. [Google Scholar] [CrossRef]
- Vijay, S.; Yuan, Q. Simplified empirical model for phosphorous removal in a facultative wastewater lagoon. J. Environ. Manag. 2017, 201, 1–5. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | MnO | P2O5 | Igloss | |
---|---|---|---|---|---|---|---|---|---|---|---|
Limestone | 0.11 | 0.03 | 0.09 | 55.54 | 0.20 | 0.03 | <0.02 | <0.01 | 0.01 | 0.01 | 43.79 |
Dolomite | 0.06 | 0.04 | 0.18 | 31.27 | 21.81 | 0.03 | <0.02 | 0.01 | 0.07 | 0.01 | 46.37 |
Oyster shell | 0.45 | 0.12 | 0.06 | 53.66 | 0.26 | 0.06 | 0.55 | <0.01 | 0.01 | 0.16 | 44.56 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, G.; Choi, Y.-H.; Lee, N.; Ahn, J.W. Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell. Water 2017, 9, 661. https://doi.org/10.3390/w9090661
Nam G, Choi Y-H, Lee N, Ahn JW. Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell. Water. 2017; 9(9):661. https://doi.org/10.3390/w9090661
Chicago/Turabian StyleNam, Gnu, Young-Hoon Choi, Namju Lee, and Ji Whan Ahn. 2017. "Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell" Water 9, no. 9: 661. https://doi.org/10.3390/w9090661
APA StyleNam, G., Choi, Y.-H., Lee, N., & Ahn, J. W. (2017). Effect by Alkaline Flocculation of Algae and Phosphorous from Water Using a Calcined Waste Oyster Shell. Water, 9(9), 661. https://doi.org/10.3390/w9090661