Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions
Abstract
:1. Introduction
- retention—the geotextile should retain the base soil to prevent the piping phenomenon,
- permeability—ensuring the passage of water to guarantee flow and preventing excessive water pressure alongside the filter.
2. Materials and Methods
2.1. Materials
2.1.1. Nonwoven Geotextiles
2.1.2. Soil
2.2. Artificial Clogging Test
2.3. Cyclic Water Flow Test
3. Results and Discussion
3.1. Artificial Clogging
3.2. Cyclic Water Flow Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hong, Y.S.; Wu, C.S. Filtration behavior of soil-nonwoven geotextile combinations subjected to various loads. Geotext. Geomembr. 2011, 29, 102–115. [Google Scholar] [CrossRef]
- Iryo, T.; Rowe, R.K. On the hydraulic behavior of unsaturated nonwoven geotextiles. Geotext. Geomembr. 2003, 21, 381–404. [Google Scholar] [CrossRef]
- Junquiera, F.F.; Silva, A.R.L.; Palmeira, E.M. Performance of drainage systems incorporating geosynthetics and their effect on leachate properties. Geotext. Geomembr. 2006, 24, 311–324. [Google Scholar] [CrossRef]
- Liu, L.F.; Chu, C.Y. Modeling the slurry filtration performance of nonwoven geotextiles. Geotext. Geomembr. 2006, 24, 325–330. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Gardoni, M.G. The influence of partial clogging and pressure on the behavior of geotextiles in drainage systems. Geosynth. Int. 2000, 7, 403–431. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Tatto, J. Behavior of geotextile filters in armoured slopes subjected to the action of waves. Geotext. Geomembr. 2015, 43, 46–55. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Tatto, J.; Araujo, G.L.S. Sagging and filtration behavior of nonwoven geotextiles overlying different bedding materials. Geotext. Geomembr. 2012, 31, 1–14. [Google Scholar] [CrossRef]
- Park, J.B.; Park, H.S.; Kim, D. Geosynthetic reinforcement of sand-mat layer above soft ground. Materials 2013, 6, 5314–5334. [Google Scholar] [CrossRef] [PubMed]
- Raisinghani, D.V.; Viswanadham, B.V.S. Evaluation of permeability characteristics of a geosynthetics-reinforced soil through laboratory tests. Geotext. Geomembr. 2010, 28, 579–588. [Google Scholar] [CrossRef]
- Scholz, M. Water quality improvement performance of geotextiles within permeable pavement systems: A critical review. Water 2013, 5, 462–479. [Google Scholar] [CrossRef]
- Cazzuffi, D.; Ielo, D.; Mandaglio, M.C.; Moraci, N. Recent developments in the design of geotextile filters. In Proceedings of the 2nd International GSI—Asia Geosynthetics Conference, Seoul, Korea, 24–26 June 2015. [Google Scholar]
- Gardoni, M.G.; Palmeira, E.M. Microstructure and pore characteristics of synthetic filters under confinement. Géotechnique 2002, 52, 405–418. [Google Scholar] [CrossRef]
- Koda, E.; Szymański, A.; Wolski, W. Field and laboratory experience with the use of strip drains in organic soils. Can. Geotech. J. 1993, 30, 308–318. [Google Scholar] [CrossRef]
- Moraci, N. Geotextile filter: Design, characterization and factors affecting clogging and blinding limit states. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil, 23–27 May 2010; pp. 413–435. [Google Scholar]
- Recio, J.; Oumeraci, H. Hydraulic permeability of structures made of geotextile sand containers; Laboratory tests and conceptual model. Geotext. Geomembr. 2008, 26, 473–487. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Remigio, A.F.N.; Ramos, M.L.G.; Bernardes, R.S. A study on biological clogging of nonwoven geotextiles under leachate flow. Geotext. Geomembr. 2008, 26, 205–219. [Google Scholar] [CrossRef]
- Vieira, J.L.; Abramento, M.; Campos, M.V.W. Experimental study of clogging in drainage systems. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil, 23–27 May 2010; pp. 1145–1148. [Google Scholar]
- Nahar, K.; Ferdous, W.; Mofiz, S.A.; Ferdous, K. A simplified mechanism for the vertical permeability test of geo-textile. Int. J. Civ. Environ. Eng. 2010, 10, 29–33. [Google Scholar]
- Paul, P.; Tota-Maharaj, K. Laboratory studies on granular filters and their relationship to geotextiles for stormwater pollutant reduction. Water 2015, 7, 1595–1609. [Google Scholar] [CrossRef]
- Faure, Y.H.; Baudoin, A.; Pierson, P.; Plé, O. A contribution for predicting geotextile clogging during filtration of suspended solids. Geotext. Geomembr. 2006, 24, 11–20. [Google Scholar] [CrossRef]
- Veylon, G.; Stoltz, G.; Mériaux, P.; Faure, Y.H.; Touze–Foltz, N. Performance of geotextile filters after 18 years’ service in drainage trenches. Geotext. Geomembr. 2016, 44, 515–533. [Google Scholar] [CrossRef]
- Chen, R.H.; Ho, C.C.; Hsu, C.Y. The effect of fine soil content on the filtration characteristics of geotextile under cyclic flows. Geosynth. Int. 2008, 15, 95–106. [Google Scholar] [CrossRef]
- Heibaum, M. Geosynthetics for waterways and flood protection structures—Controlling the interaction of water and soil. Geotext. Geomembr. 2014, 42, 374–393. [Google Scholar] [CrossRef]
- Peng, R.; Hou, Y.; Zhan, L.; Yao, Y. Back-analyses of landfill instability induced by high water level: Case study on Shenzhen landfill. Int. J. Environ. Res. Public Health 2016, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Giroud, J.P. Granular filters and geotextile filters. In Proceedings of the 2nd International Conference Geofilters, Montréal, QC, Canada, 29–31 May 1996; pp. 565–680. [Google Scholar]
- Giroud, J.P. Development of criteria for geotextile and granular filters. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil, 23–27 May 2010; pp. 45–64. [Google Scholar]
- Koerner, R.M.; Koerner, G.R. Lessons learned from geotextile filter failures under challenging field conditions. Geotext. Geomembr. 2015, 43, 272–281. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Trejos Galvis, H.L. Opening sizes and filtration behavior of nonwoven geotextiles under confined and partial clogging conditions. Geosynth. Int. 2017, 24, 125–138. [Google Scholar] [CrossRef]
- Sousa, R.; Pinho–Lopes, M. Numerical tool for the design of granular and geotextile filters. In Proceedings of the 5th European Geosynthetics Congress, Valencia, Spain, 16–19 September 2012; pp. 274–283. [Google Scholar]
- Wu, C.S.; Hong, Y.S.; Yan, Y.W.; Chang, B.S. Soil-nonwoven geotextile filtration behavior under contact with drainage materials. Geotext. Geomembr. 2006, 24, 1–10. [Google Scholar] [CrossRef]
- Cazzuffi, D.; Moraci, N.; Mandaglio, M.C.; Ielo, D. Evolution in design of geotextile filters. In Proceedings of the 6th European Geosynthetics Congress, Ljubljana, Slovenia, 25–28 September 2016; pp. 40–63. [Google Scholar]
- Miszkowska, A.; Lenart, S.; Koda, E. Laboratory studies of artificial clogging of nonwoven geotextiles. In Proceedings of the 6th European Geosynthetics Congress, Ljubljana, Slovenia, 25–28 September 2016; pp. 1434–1440. [Google Scholar]
- Segismundo, E.Q.; Kim, L.H.; Jeong, S.M.; Lee, B.S. A laboratory study on the filtration and clogging of the sand-bottom ash mixture for stormwater infiltration filter media. Water 2017, 9, 32. [Google Scholar] [CrossRef]
- Maheshwari, B.K.; Gunjagi, D.A. Filtration and clogging behavior of geotextiles with roorkee soils. Geotech. Geol. Eng. 2008, 26, 101–107. [Google Scholar] [CrossRef]
- Fannin, R.J. On the clogging of geotextile filters. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil, 23–27 May 2010; pp. 401–412. [Google Scholar]
- Wesołowski, A.; Krzywosz, Z.; Brandyk, T. Geosynthetics in Engineering Constructions; SGGW: Warsaw, Poland, 2000; p. 70. [Google Scholar]
- Fleming, I.R.; Rowe, R.K. Laboratory studies of clogging of landfill leachate collection and drainage systems. Can. Geotech. J. 2004, 41, 134–153. [Google Scholar] [CrossRef]
- Adamcová, D.; Vaverková, M.D. New polymer behavior under the landfill conditions. Waste Biomass Valoriz. 2016, 7, 1459–1467. [Google Scholar] [CrossRef]
- Koda, E.; Paprocki, P. Durability of leachate drainage systems of old sanitary landfills. In Proceedings of the 3rd International Conference Geofilters, Warsaw, Poland, 5–7 June 2000; pp. 215–222. [Google Scholar]
- Correia, L.G.C.S.; Ehrlich, M.; Mendonca, M.B. The effect of submersion in the ochre formation in geotextile filters. Geotext. Geomembr. 2017, 45, 1–7. [Google Scholar] [CrossRef]
- Yaman, C.; Martin, J.P.; Korkut, E. Effects of wastewater filtration on geotextile permeability. Geosynth. Int. 2006, 13, 87–97. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, Q.; Liu, L. Impact of high concentration solutions on hydraulic properties of geosynthetic clay liner materials. Materials 2012, 5, 2326–2341. [Google Scholar] [CrossRef]
- ISO 11058:2010—Geotextiles and Geotextile-Related Products—Determination of Water Permeability Characteristics Normal to the Plane, Without Load; International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 14688-2:2004—Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 2: Principles for A Classification; International Organization for Standardization: Geneva, Switzerland, 2004.
- Kenney, T.C.; Lau, D. Internal stability of granular filters. Can. Geotech. J. 1985, 22, 215–225. [Google Scholar] [CrossRef]
- Miszkowska, A.; Koda, E.; Krzywosz, Z.; Król, P.; Boruc, N. Change of hydraulic properties of nonwoven geotextile after 22 years of exploitation in an earthfill dam. Acta Sci. Pol. 2016, 15, 119–126. (In Polish) [Google Scholar]
- Koda, E.; Miszkowska, A.; Stępień, S. Quality Control of Non-Woven Geotextiles Used in Drainage System in an Old Remedial Landfill. In Proceedings of the Geo-Chicago 2016, Chicago, IL, USA, 14–18 August 2016; pp. 254–263. [Google Scholar]
- Kohata, Y.; Tanaka, M.; Sato, O.; Hirai, T. Clogging evaluation on cross-plane flow performance of geotextile filter. In Proceedings of the 8th International Conference on Geosynthetics, Yokohama, Japan, 18–22 September 2006; pp. 561–564. [Google Scholar]
- Nishigata, T.; Fannin, R.J.; Vaid, Y.P. Blinding and clogging of a nonwoven geotextile. Soils Found. 2000, 40, 121–127. [Google Scholar] [CrossRef]
- Lin, C.Y.; Yang, K.H. Experimental study on measures for improving the drainage efficiency of low-permeability and low-plasticity silt with nonwoven geotextile drains. J. Chin. Inst. Civ. Hydraul. Eng. 2014, 26, 71–82. [Google Scholar]
- Miszkowska, A. Tests of the influence of clogging on the filtration properties of nonwoven geotextiles. In Outline of Selected Issues in Land Engineering; Bzówka, J., Ed.; Silesian University of Technology: Gliwice, Poland, 2016; pp. 51–58. (In Polish) [Google Scholar]
- Chen, R.H.; Ho, C.C.; Chung, W.B. The filtration mechanism and micro-observation of soil-geotextile systems under cyclic flows. J. Geoeng. 2008, 3, 101–112. [Google Scholar]
- Faure, Y.H.; Ho, C.C.; Chen, R.H.; Lay, M.; Blaza, J. A wave flume experiment for studying erosion mechanism of revetments using geotextiles. Geotext. Geomembr. 2010, 28, 360–373. [Google Scholar] [CrossRef]
Geotextile | Mass per unit Area | Thickness d 1 | Opening Size O90 | Tensile Strength CMD 2 | Tensile Strength MD 3 |
---|---|---|---|---|---|
(g/m2) | (mm) | (μm) | (kN/m) | (kN/m) | |
A | 450 | 4.5 | 83 | 27.1 | 26.7 |
B | 280 | 2.6 | 80 | 24.0 | 20.3 |
C | 200 | 2.0 | 100 | 14.5 | 16.0 |
Nonwoven Geotextile A | ||||||
Head Loss (m) | v20 (m/s) | |||||
Minimum | Quartile 1 | Median | Quartile 3 | Maximum | Mean | |
0.014 | 0.0012738 | 0.012941 | 0.012942 | 0.013100 | 0.013121 | 0.012968 |
0.028 | 0.022983 | 0.023059 | 0.023110 | 0.023111 | 0.023318 | 0.023116 |
0.042 | 0.033018 | 0.033076 | 0.033100 | 0.033219 | 0.022243 | 0.033169 |
0.056 | 0.037000 | 0.037067 | 0.037145 | 0.037199 | 0.037528 | 0.037188 |
0.070 | 0.044180 | 0.044316 | 0.044397 | 0.044440 | 0.044592 | 0.044385 |
VH50 (m/s) | 0.035 | |||||
kn (m/s) | 0.0042 | |||||
Nonwoven Geotextile B | ||||||
Head Loss (m) | v20 (m/s) | |||||
Minimum | Quartile 1 | Median | Quartile 3 | Maximum | Mean | |
0.014 | 0.006849 | 0.007017 | 0.009838 | 0.007115 | 0.007134 | 0.007033 |
0.028 | 0.012124 | 0.012305 | 0.018599 | 0.012496 | 0.012699 | 0.012416 |
0.042 | 0.023988 | 0.024016 | 0.029380 | 0.024058 | 0.024186 | 0.024056 |
0.056 | 0.030105 | 0.030186 | 0.0360525 | 0.030389 | 0.030485 | 0.030303 |
0.070 | 0.035488 | 0.035499 | 0.043580 | 0.035597 | 0.035688 | 0.035558 |
VH50 (m/s) | 0.026 | |||||
kn (m/s) | 0.0013 | |||||
Nonwoven Geotextile C | ||||||
Head Loss (m) | v20 (m/s) | |||||
Minimum | Quartile 1 | Median | Quartile 3 | Maximum | Mean | |
0.014 | 0.009835 | 0.009837 | 0.009838 | 0.009839 | 0.009839 | 0.009838 |
0.028 | 0.018500 | 0.018589 | 0.018599 | 0.018600 | 0.018700 | 0.018598 |
0.042 | 0.029170 | 0.029330 | 0.029380 | 0.029384 | 0.029740 | 0.029401 |
0.056 | 0.036000 | 0.036000 | 0.0360525 | 0.036105 | 0.037189 | 0.036269 |
0.070 | 0.042887 | 0.043295 | 0.043580 | 0.043745 | 0.045800 | 0.043861 |
VH50 (m/s) | 0.033 | |||||
kn (m/s) | 0.0017 |
Soil | D10 1 | D15 | D50 | D85 | CU 2 | CC 3 |
---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (-) | (-) | |
siSa | 0.028 | 0.035 | 0.17 | 0.55 | 8.6 | 0.54 |
Particle Diameter D (mm) | Point Coordinate (Fn; Hn) |
---|---|
0.001 | (F0; H0) = (0; 2.0) |
0.004 | (F1; H1) = (2; 1) |
0.016 | (F2; H2) = (3; 28) |
0.064 | (F3; H3) = (31; 33) |
0.256 | (F4; H4) = (64; 30) |
1.024 | (F5; H5) = (94; 6) |
Type of Geotextile | kn for Unworn Nonwoven Geotextile | kn for Nonwoven Geotextiles after Artificial Clogging | Decrease of kn |
---|---|---|---|
(m/s) | (m/s) | (%) | |
A | 0.0042 | 0.0018 | 57.1 |
B | 0.0013 | 0.0002 | 84.6 |
C | 0.0017 | 0.0006 | 64.7 |
Type of Geotextile | kn for Unworn Nonwoven Geotextile | kn after 240 min of the Cyclic Water Flow Test | kn after 240 min of the Non-Cyclic Water Flow Test | Decrease of kn after the Cyclic Water Flow Test |
---|---|---|---|---|
(m/s) | (m/s) | (m/s) | (%) | |
A | 0.0042 | 0.00110 | 0.00140 | 73.8 |
B | 0.0013 | 0.00014 | 0.00017 | 89.2 |
C | 0.0017 | 0.00033 | 0.00038 | 80.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miszkowska, A.; Lenart, S.; Koda, E. Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water 2017, 9, 660. https://doi.org/10.3390/w9090660
Miszkowska A, Lenart S, Koda E. Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water. 2017; 9(9):660. https://doi.org/10.3390/w9090660
Chicago/Turabian StyleMiszkowska, Anna, Stanislav Lenart, and Eugeniusz Koda. 2017. "Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions" Water 9, no. 9: 660. https://doi.org/10.3390/w9090660
APA StyleMiszkowska, A., Lenart, S., & Koda, E. (2017). Changes of Permeability of Nonwoven Geotextiles due to Clogging and Cyclic Water Flow in Laboratory Conditions. Water, 9(9), 660. https://doi.org/10.3390/w9090660