A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts
Abstract
:1. Introduction
2. Methods
2.1. Design Requirements
2.2. System Components
2.3. SWAT–VSA Model Component
2.4. Data Structure Component
2.5. User Interface
2.6. Proof of Concept Application
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shortle, J.S.; Ribaudo, M.; Horan, R.D.; Blandford, D. Reforming agricultural nonpoint pollution policy in an increasingly budget-constrained environment. Environ. Sci. Technol. 2012, 46, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Puckett, L.J. Identifying the major sources of nutrient water pollution. Environ. Sci. Technol. 1995, 29, 408A–414A. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Bolster, C.; Davis, J.; Easton, Z.M.; Kleinman, P.; Mallinaro, A.; Osmond, D.; Vadas, P.; White, M. Technical Guidance for Assessing Phosphorus Indices. Southern Cooperative Series Bulletin No. 417, January 2013. Available online: http://saaesd.ncsu.edu/docs/Assessing% 20P%20Indices%20SERA17.pdf (accessed on 20 August 2016).
- U.S. Department of Agriculture—Natural Resources Conservation Service. Title 190—National Instruction (NI), Part 302, Nutrient Management Policy Implementation. 2011. Available online: https://www.crops.org/files/science-policy/testimony/590-part302.pdf (accessed on 19 August 2016).
- Easton, Z.M.; Kleinman, P.J.A.; Buda, A.R.; Goering, D.; Emberston, N.; Reed, S.; Drohan, P.J.; Walter, T.M.; Guinan, P.; Lory, J.A.; et al. Short-term forecasting tools for agricultural nutrient management. J. Environ. Qual. 2017. [Google Scholar] [CrossRef]
- Marjerison, R.D.; Dahlke, H.; Easton, Z.M.; Seifert, S.; Walter, M.T. A Phosphorus Index transport factor based on variable source area hydrology for New York State. J. Soil Water Conserv. 2011, 66, 149–157. [Google Scholar] [CrossRef]
- Osmond, D.; Meals, D.; Hoag, D.; Arabi, M.; Luloff, A.; Jennings, G.; McFarland, M.; Spooner, J.; Sharpley, A.; Line, D. Improving conservation practices programming to protect water quality in agricultural watersheds: Lessons learned from the National Institute of Food and Agriculture–Conservation Effects Assessment Project. J. Soil Water Conserv. 2012, 67, 122A–127A. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2016, 155, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Owens, P.R.; Leytem, A.B.; Warnemuende, E.A. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event. Environ. Pollut. 2007, 147, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Bharati, P.; Chaudhury, A. An empirical investigation of decision-making satisfaction in web-based decision support systems. Decis. Support Syst. 2004, 37, 187–197. [Google Scholar] [CrossRef]
- Power, D.J.; Phillips-Wren, G. Impact of social media and Web 2.0 on decision-making. J. Decis. Syst. 2011, 20, 249–261. [Google Scholar] [CrossRef]
- Abaza, M.; Anctil, F.; Fortin, V.; Turcotte, R. Sequential streamflow assimilation for short-term hydrological ensemble forecasting. J. Hydrol. 2014, 519, 2692–2706. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Engel, B.A.; Farnsworth, R.L. Web-based GIS and spatial decision support system for watershed management. J. Hydroinform. 2005, 7, 165–174. [Google Scholar]
- Dutta, D.; Welsh, W.D.; Vaze, J.; Kim, S.S.H.; Nicholls, D. A Comparative evaluation of short-term streamflow forecasting using time series analysis and rainfall-runoff models in eWater Source. Water Resour. Manag. 2012, 26, 4397–4415. [Google Scholar] [CrossRef]
- Tsai, M.J.; Abrahart, R.J.; Mount, N.J.; Chang, F.J. Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan. Hydrol. Process. 2014, 28, 1055–1070. [Google Scholar] [CrossRef]
- Snow, A.D.; Christensen, S.D.; Swain, N.R.; Nelson, E.J.; Ames, D.P.; Jones, N.L.; Ding, D.; Noman, N.S.; David, C.H.; Pappenberger, F.; et al. A High-Resolution National-Scale Hydrologic Forecast System from a Global Ensemble Land Surface Model. J. Am. Water Resour. Assoc. 2016, 52, 950–964. [Google Scholar] [CrossRef]
- Swain, N.R. Tethys Platform: A Development and Hosting Platform for Water Resources Web Apps. All Theses and Dissertations. 5832. 2015. Available online: http://scholarsarchive.byu.edu/etd/5832 (accessed on 19 August 2016).
- Tayyebi, A.; Meehan, T.D.; Dischler, J.; Radloff, G.; Ferris, M.; Gratton, C. SmartScape™: A web-based decision support system for assessing the tradeoffs among multiple ecosystem services under crop-change scenarios. Comput. Electron. Agric. 2016, 121, 108–121. [Google Scholar] [CrossRef]
- Chaney, N.W.; Roundy, J.K.; Herrera-Estrada, J.E.; Wood, E.F. High-resolution modeling of the spatial heterogeneity of soil moisture: Applications in network design. Water Resour. Res. 2015, 51, 619–638. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44, W01423. [Google Scholar] [CrossRef]
- About PageSpeed Insights. 2015. Available online: https://developers.google.com/speed/docs/insights/about (accessed on 2 October 2016).
- Sommerlot, A.R.; Berbero, M.; Fuka, D.R.; Easton, Z.M. Coupling the short-term Global Forecast System weather data with a variable source area hydrologic model. Environ. Model. Softw. 2016, 86, 68–80. [Google Scholar] [CrossRef]
- Easton, Z.M.; Fuka, D.; Walter, M.; Cowan, D.; Schneiderman, E.; Steenhuis, T. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J. Hydrol. 2008, 348, 279–291. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development of a basin scale model called SWAT—Soil and Water Assessment Tool. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Fuka, D.R.; Auerbach, D.; Collick, A.S.; Easton, Z.M. The TopoSWAT toolbox: Enhanced basin characterization in SWAT initializations. Envron. Model. Softw. 2017. in review. [Google Scholar]
- IUSS, W.G.W. World Reference Base for Soil Resources 2006; First Update 2007; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Fuka, D.R.; Walter, M.T.; Macalister, C.; Steenhuis, T.S.; Easton, Z.M. SWATmodel: A multi-operating system, multi-platform SWAT model package in R. J. Am. Water Resour. Assoc. 2014, 50, 1349–1353. [Google Scholar] [CrossRef]
- Sommerlot, A.R.; Fuka, D.R.; Easton, Z.M. GetMet: Get Meteorological Data for Hydrologic Models. R Package Version 0.3.2. 2016b. Available online: https://CRAN.R-project.org/package=getMet 5832 (accessed on 19 August 2016).
- Slippy Map. 2016. Available online: http://wiki.openstreetmap.org/wiki/Slippy_Map (accessed on 1 October 2016).
- GDAL2Tiles. 2015. Available online: http://wiki.openstreetmap.org/wiki/GDAL2Tiles (accessed on 1 October 2016).
- Ronacher, A. Welcome to Flask. 2015. Available online: http://flask.pocoo.org/docs/0.11/ (accessed on 1 October 2016).
- Mohamoud, Y. Comparison of Hydrologic Responses at Different Watershed Scales; EPA/600/R-04/103; National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency: Columbia, WA, USA, 2004; pp. 1–81.
- Moriasi, D.; Arnold, J.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
End-User Requirements | Spatial Resolution | 10 m or Higher |
---|---|---|
Temporal Resolution | sub-daily | |
Accessibility | PC and mobile internet connected devices | |
Usability | 80 point score on Page Speed Insights | |
Research Requirements | License | open source |
Cost | free | |
Applicability | world wide | |
Flexibility | Able to display a wide range of rasters |
Platform | Speed | User Experience | High Score Component | Low Score Component |
---|---|---|---|---|
Desktop | 82 | N/A | Reduced Server Response Time | External JavaScript Resource |
Mobile | 68 | Mobile Friendly | Simple Design | External JavaScript Resource |
PageSpeed Score | ||||
---|---|---|---|---|
DSS Name | Mobile | Desktop | Mobile Friendly | URL |
Fusarium Head Blight Risk | 59 | 31 | No | http://www.wheatscab.psu.edu/ |
Climate Normals North East | 61 | 75 | No | http://www.nrcc.cornell.edu/regional/climatenorms/climatenorms.html |
Climate Patterns Viewer | 36 | 34 | No | https://mygeohub.org/groups/u2u/cpv |
CornSplit Nitrogen Application | 36 | 34 | No | https://mygeohub.org/groups/u2u/splitn |
Wisconsin Runoff Risk Advisory Forecast | 55 | 75 | No | http://www.manureadvisorysystem.wi.gov/app/runoffrisk |
Missouri’s Design Storm Notification System | 76 | 59 | Yes | http://ag3.agebb.missouri.edu/design_storm/ |
Washington Manure Spreading Advisory | 61 | 77 | Yes | https://maps.whatcomcd.org/whatcom_msa |
Saturated Area Forecast * | 68 | 82 | Yes | http://zachary.bse.vt.edu/beta |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommerlot, A.R.; Easton, Z.M. A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts. Water 2017, 9, 604. https://doi.org/10.3390/w9080604
Sommerlot AR, Easton ZM. A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts. Water. 2017; 9(8):604. https://doi.org/10.3390/w9080604
Chicago/Turabian StyleSommerlot, Andrew R., and Zachary M. Easton. 2017. "A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts" Water 9, no. 8: 604. https://doi.org/10.3390/w9080604
APA StyleSommerlot, A. R., & Easton, Z. M. (2017). A Web Based Interface for Distributed Short-Term Soil Moisture Forecasts. Water, 9(8), 604. https://doi.org/10.3390/w9080604