Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan
Abstract
:1. Introduction
2. Site Description
3. Material and Methods
3.1. Field Measurements
3.2. Flow Separation
3.3. Definition of Event Flow and Flow Peaks
3.4. Statistical Analysis
4. Results and Discussion
4.1. Changes in Event Flow after Thinning
4.2. Flow Peaks Changes after Thinning
4.3. Comparisons of Event Flow and Flow Peaks
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Astronomical Observatory. Chronological Environmental Tables MMIX/2010; Maruzen: Tokyo, Japan, 2009; p. 98. (In Japanese) [Google Scholar]
- Japan Forestry Agency. Forest White Paper; Japan Forestry Agency: Tokyo, Japan, 2007; p. 165. (In Japanese) [Google Scholar]
- Onda, Y. Current Status of Discharge and Sediment Runoff in Abandoned Plantation Forests; Iwanami Shoten: Tokyo, Japan, 2010. (In Japanese) [Google Scholar]
- Miura, S.; Hirai, K.; Yamada, T. Transport rates of surface materials on steep forested slopes induced by raindrop splash erosion. J. For. Res. 2002, 7, 201–211. [Google Scholar] [CrossRef]
- Nanko, K.; Mizugaki, S.; Onda, Y. Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena 2008, 3, 348–361. [Google Scholar] [CrossRef]
- Gomi, T.; Asano, Y.; Uchida, T.; Onda, Y.; Sidle, R.C.; Miyata, S.; Kosugi, K.; Mizugaki, S.; Fukuyama, T.; Fukushima, T. Evaluation of storm runoff pathways in steep nested catchments draining a Japanese cypress forest in central Japan: A geochemical approach. Hydrol. Process. 2010, 24, 550–566. [Google Scholar] [CrossRef]
- Sidle, R.C.; Hirano, T.; Gomi, T.; Terajima, T. Hortonian overland flow from Japanese forest plantations—An aberration, the real thing, or something in between? Hydrol. Process. 2007, 21, 3237–3247. [Google Scholar] [CrossRef]
- Lesch, W.; Scott, D.F. The response in water yield to the thinning of Pinus radiata, Pinus patula and Eucalyptus grandis plantations. Forest. Ecol. Manag. 1997, 99, 295–307. [Google Scholar] [CrossRef]
- Yanai, R.D.; Twery, M.J.; Stout, S.L. Woody understory response to changes in overstory density: Thinning in Allegheny hardwoods. For. Ecol. Manag. 1998, 102, 45–60. [Google Scholar] [CrossRef]
- Grace, J.M., III; Skaggs, R.M.; Cassel, D.K. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Sci. Soc. Am. J. 2006, 70, 503–509. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapo-transpiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Hornbeck, J.W.; Adams, M.B.; Corbett, E.S.; Verry, E.S.; Lynch, J.A. Long-term impacts of forest treatments on water yield: A summary for northeastern USA. J. Hydrol. 1993, 150, 323–344. [Google Scholar] [CrossRef]
- Stednick, J.D. Monitoring the effects of timber harvest on annual water yield. J. Hydrol. 1996, 176, 79–95. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Wright, K.A.; Sendek, K.H.; Rice, R.M.; Thomas, R.B. Logging effects on streamflow: Storm runoff at Caspar Creek in northwestern California. Water Resour. Res. 1990, 26, 1657–1667. [Google Scholar] [CrossRef]
- Ruprecht, J.K.; Schofield, N.J.; Crombie, D.S.; Vertessy, R.A.; Stoneman, G.L. Early hydrological response to intense forest thinning in southwestern Australia. J. Hydrol. 1991, 127, 261–277. [Google Scholar] [CrossRef]
- Grace, J.M., III; Skaggs, R.W.; Malcom, H.R.; Chescheir, G.M.; Cassel, D.K. Influence of Thinning Operations on the Hydrology of a Drained Coastal Plantation Watershed; Paper Number 032038; The Society of Engineering in Agricultural, Food, and Biological Systems: Las Vegas, NV, USA, 2003. [Google Scholar] [CrossRef]
- Rahman, A.A.; Hiura, H.; Shino, K.; Takese, K. Effects of forest thinning on direct runoff and peak runoff properties in a small mountainous watershed in Kochi Prefecture, Japan. Pak. J. Biol. Sci. 2005, 8, 259–266. [Google Scholar] [CrossRef]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C.; Kosugi, K.; Onda, Y. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest. J. Hydrol. 2012, 444–445, 51–62. [Google Scholar] [CrossRef]
- Choi, B.; Hatten, J.A.; Dewey, J.C.; Otsuki, K.; Cha, D. Effect of timber harvesting on stormflow characteristics in headwater streams of managed, forested watersheds in the Upper Gulf Coastal Plain in Mississippi. J. Fac. Agric. Kyushu. Univ. 2013, 58, 395–402. [Google Scholar]
- Ziemer, R.R. Storm flow response to road building and partial cutting in small streams of northern California. Water Resour. Res. 1981, 17, 907–917. [Google Scholar] [CrossRef]
- Sendek, K.H. Effects of Timber Harvesting on the Lag Time of Caspar Creek Watershed. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 1985. [Google Scholar]
- McGlynn, B.L.; McDonnell, J.J.; Seibert, J.; Kendall, C. Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour. Res. 2004, 40, W07504. [Google Scholar] [CrossRef]
- Davies, J.A.C.; Beven, K. Hysteresis and scale in catchment storage, flow and transport. Hydrol. Process. 2015, 29, 3604–3615. [Google Scholar] [CrossRef]
- Warburton, J. Sediment transfer in steep upland catchments (northern England, UK): Landform and sediment source coupling. In Landform—Structure, Evolution, Process Control; Otto, J.C., Dikau, R., Eds.; Springer: Berlin, Germany, 2010; pp. 165–183. [Google Scholar] [CrossRef]
- Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B. The role of headwater streams in downstream water quality. J. Am. Water. Resour. Assoc. 2007, 43, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Beschta, R.L.; Platts, W.S. Morphological Features of Small Streams: Significance and Function. J. Am. Water Resour. Assoc. 1986, 22, 369–379. [Google Scholar] [CrossRef]
- Abansu Corporation. Report of Well Construction; Abansu Corp.: Kumamoto, Japan, 2010. (In Japanese) [Google Scholar]
- Takahashi, J. Development of innovative technologies for increasing catchment runoff and improving river environments by the developing management practices for devastated forest plantations. 2014; unpublished. [Google Scholar]
- Tateishi, M.; Xiang, Y.; Saito, T.; Otsuki, K.; Kasahara, T. Changes in canopy transpiration of Japanese cypress and Japanese cedar plantations because of selective thinning. Hydrol. Process. 2015, 29, 5088–5097. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Collischonn, W.; Fan, F.M. Defining parameters for Eckhardt’s digital baseflow filter. Hydrol. Process. 2013, 27, 2614–2622. [Google Scholar] [CrossRef]
- Gonzales, A.L.; Nonner, J.; Heijkers, J.; Uhlenbrook, S. Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Sci. 2009, 13, 2055–2068. [Google Scholar] [CrossRef]
- Lim, K.J.; Park, Y.S.; Kim, J.; Shin, Y.-C.; Kim, N.W.; Kim, S.J.; Jeon, J.-H.; Engel, B.A. Development of genetic algorithm-based optimization module in WHAT system for hydrograph analysis and model application. Comput. Geosci. 2010, 36, 936–944. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 100. [Google Scholar]
- Ward, R.C.; Robinson, M. Principles of Hydrology; McGraw-Hill: London, UK, 2010. [Google Scholar]
- Xiao, Q.; McPherson, E.G.; Ustin, S.L.; Grismer, M.E.; Simpson, J.R. Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol. Process. 2000, 14, 763–784. [Google Scholar] [CrossRef]
- Matsuda, H. Canopy Interception and Spatial Variation of Throughfall in Japanese Cedar and Cypress Plantation. Master’s Thesis, Kyushu University, Fukuoka, Japan, 2013. [Google Scholar]
- Sun, H.; Kasahara, T.; Otsuki, K.; Saito, T.; Onda, Y. Spatio-temporal streamflow generation in a small, steep headwater catchment in western Japan. Hydrol. Sci. J. 2016, 1–12. [Google Scholar] [CrossRef]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C. Peak flow responses and recession flow characteristics after thinning of Japanese cypress forest in a headwater catchment. Hydrol. Res. Lett. 2012, 6, 35–40. [Google Scholar] [CrossRef]
Rainfall Amount (mm) | <30 | ≥30 | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Rainfall Intensity (mm/h) | <2 | ≥2 | <2 | ≥2 | |||||
Group Number | 1 | 2 | 3 | 4 | |||||
Years | 2011 | 2013 | 2011 | 2013 | 2011 | 2013 | 2011 | 2013 | |
Number of events | 31 | 30 | 15 | 14 | 4 | 6 | 17 | 14 | |
Event rainfall amount (mm) | Average | 12.6 | 14.0 | 12.9 | 15.4 | 68.1 | 46.3 | 85.6 | 100.8 |
Median | 10.5 | 12.0 | 14.0 | 13.5 | 72.5 | 40.8 | 74.0 | 71.5 | |
Event peak flow (mm/h) | Average | 0.17 | 0.17 | 0.46 | 0.23 | 0.48 | 0.37 | 0.85 | 1.23 |
Median | 0.16 | 0.13 | 0.33 | 0.21 | 0.43 | 0.18 | 0.86 | 1.07 | |
Event quick flow (mm) | Average | 0.4 | 0.9 | 0.8 | 0.6 | 8.0 | 4.2 | 8.6 | 14.4 |
Median | 0.4 | 0.4 | 0.5 | 0.4 | 9.6 | 2.7 | 7.0 | 13.2 | |
Event water yield (mm) | Average | 4.0 | 4.6 | 4.9 | 3.4 | 21.7 | 12.3 | 18.9 | 30.5 |
Median | 2.1 | 3.1 | 3.8 | 1.7 | 22.8 | 7.2 | 13.3 | 22.8 | |
Event peak response time (h) | Average | 0.9 | 0.7 | 0.9 | 0.9 | 1 | 0.8 | 1.3 | 0.9 |
Median | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Event peak flow | u-test | 0.19 | 0.59 | 0.26 | 0.47 | ||||
ANCOVA test | 0.76 | 0.19 | 0.51 | 0.18 | |||||
Event quick flow | u-test | 0.28 | 0.59 | 0.77 | 0.15 | ||||
ANCOVA test | 0.14 | 0.44 | 0.87 | 0.11 | |||||
Event water yield | u-test | 0.16 | 0.27 | 0.59 | 0.33 | ||||
ANCOVA test | 0.83 | 0.34 | 0.93 | 0.24 | |||||
Event peak response time | u-test | 0.25 | 0.74 | 0.81 | 0.48 |
Rainfall Amount (mm) | <30 | ≥30 | |||||||
---|---|---|---|---|---|---|---|---|---|
Average Rainfall Intensity (mm/h) | <2 | ≥2 | <2 | ≥2 | |||||
Group Number | 1 | 2 | 3 | 4 | |||||
Years | 2011 | 2013 | 2011 | 2013 | 2011 | 2013 | 2011 | 2013 | |
Number of flow peaks | 84 | 77 | 19 | 19 | 30 | 27 | 61 | 61 | |
Accumulated rainfall (mm) | Average | 4.1 | 4.5 | 11.1 | 10.7 | 7.9 | 8.2 | 20.9 | 18.9 |
Median | 2.5 | 3.0 | 10.5 | 10.5 | 4.8 | 5.5 | 17.5 | 13.0 | |
Flow peak (mm/h) | Average | 0.18 | 0.18 | 0.36 | 0.22 | 0.31 | 0.23 | 0.60 | 0.73 |
Median | 0.16 | 0.13 | 0.31 | 0.20 | 0.33 | 0.12 | 0.51 | 0.53 | |
Flow rise (mm/h) | Average | 0.02 | 0.02 | 0.09 | 0.07 | 0.04 | 0.05 | 0.25 | 0.33 |
Median | 0.01 | 0.01 | 0.06 | 0.07 | 0.01 | 0.02 | 0.12 | 0.13 | |
Flow drop (mm/h) | Average | 0.02 | 0.02 | 0.09 | 0.07 | 0.04 | 0.05 | 0.22 | 0.30 |
Median | 0.01 | 0.01 | 0.06 | 0.07 | 0.01 | 0.02 | 0.08 | 0.09 | |
Accumulated quick flow (mm) | Average | 0.15 | 0.41 | 0.72 | 0.56 | 1.23 | 1.09 | 2.47 | 3.70 |
Median | 0.09 | 0.17 | 0.40 | 0.31 | 0.74 | 0.48 | 1.29 | 1.48 | |
Flow peak response time (h) | Average | 0.9 | 0.6 | 0.8 | 0.7 | 0.6 | 0.5 | 1.0 | 0.4 |
Median | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | |
Accumulated rainfall | u-test | 0.67 | 0.95 | 0.51 | 0.35 | ||||
Flow peak | u-test | 0.73 | 0.04 | 0.06 | 0.64 | ||||
ANCOVA test | 0.94 | 0.02 | 0.17 | 0.02 | |||||
Flow rise | u-test | 0.03 | 0.66 | 0.02 | 0.65 | ||||
ANCOVA test | 0.79 | 0.21 | 0.77 | <0.01 | |||||
Flow drop | u-test | 0.03 | 0.95 | 0.51 | 0.72 | ||||
ANCOVA test | 0.34 | 0.34 | 0.48 | 0.01 | |||||
Accumulated quick flow | u-test | <0.01 | 0.68 | 0.30 | 0.68 | ||||
ANCOVA test | 0.01 | 0.49 | 0.68 | 0.03 | |||||
Flow peak response time | u-test | <0.01 | 0.46 | 0.75 | <0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Kasahara, T.; Otsuki, K.; Tateishi, M.; Saito, T.; Onda, Y. Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan. Water 2017, 9, 446. https://doi.org/10.3390/w9060446
Sun H, Kasahara T, Otsuki K, Tateishi M, Saito T, Onda Y. Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan. Water. 2017; 9(6):446. https://doi.org/10.3390/w9060446
Chicago/Turabian StyleSun, Haotian, Tamao Kasahara, Kyoichi Otsuki, Makiko Tateishi, Takami Saito, and Yuichi Onda. 2017. "Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan" Water 9, no. 6: 446. https://doi.org/10.3390/w9060446
APA StyleSun, H., Kasahara, T., Otsuki, K., Tateishi, M., Saito, T., & Onda, Y. (2017). Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan. Water, 9(6), 446. https://doi.org/10.3390/w9060446