Performance and Yeast Tracking in A Full-Scale Oil-Containing Paromomycin Production Wastewater Treatment System Using Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Cultivation
2.2. Description of Pilot and Full-scale Systems
2.3. Sample Collection and Chemical Analyses
2.4. Clone Library Analysis and qPCR
3. Results and Discussion
3.1. Chemical Characteristics of Paromomycin Production Wastewater
3.2. Performances of Pilot and Full-Scale Pretreatment Systems by Yeast
3.3. Composition of Eukarya and Bacteria in the Pilot and Full-Scale Systems
3.4. Abundance of Fungal and Bacterial Genes in the Full-Scale System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ayar-Kayali, H.; Tarhan, L. Vancomycin antibiotic production and TCA-glyoxylate pathways depending on the glucose concentration in Amycolatopsis orientalis. Enzyme Microb. Technol. 2006, 38, 727–734. [Google Scholar] [CrossRef]
- Chan, M.; Sim, T.S. Malate synthase from Streptomyces clavuligerus NRRL3585: Cloning, molecular characterization and its control by acetate. Microbiol. 1998, 144, 3229–3237. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Guides to Pollution Prevention: The Pharmaceutical Industry; EPA: Cincinnati, OH, USA, 1991.
- LaPara, T.M.; Nakatsu, C.H.; Pantea, L.M.; Alleman, J.E. Aerobic biological treatment of a pharmaceutical wastewater: Effect of temperature on COD removal and bacterial community development. Water Res. 2001, 35, 4417–4425. [Google Scholar] [CrossRef]
- Zhu, A.; Zhu, W.; Wu, Z.; Jing, Y. Recovery of clindamycin from fermentation wastewater with nanofiltration membranes. Water Res. 2003, 37, 3718–3732. [Google Scholar] [CrossRef]
- Tekin, H.; Bilkay, O.; Ataberk, S.S.; Balta, T.H.; Ceribasi, I.H.; Sanin, F.D.; Dilek, F.B.; Yetis, U. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater. 2006, 136, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Achlesh, D.; Kannan, P. Pretreatment of synthetic dairy wastewater using the sophorolipid-producing yeast Candida bombicola. Appl. Biochem. Biotechnol. 2011, 163, 720–728. [Google Scholar]
- Xing, Z.P.; Sun, D.Z. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process. J. Hazard. Mater. 2009, 168, 1264–1268. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Hayet, D.; Abdeltif, A. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. J. Environ. Sci. 2013, 25, 1906–1912. [Google Scholar]
- Wang, X.X.; Zhao, Z.H.; Chang, T.S.; Liu, J.G. Yeast screening from avermectins wastewater and investigation on the ability of its fermentation. Bioproc. Biosyst. Eng. 2011, 34, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Tondee, T.; Sirianuntapiboon, S.; Ohmomo, S. Decolorization of molasses wastewater by yeast strain, Issatchenkia orientalis No. SF9-246. Bioresour. Technol. 2008, 99, 5511–5519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Rittmann, B.E.; Wang, J.L.; Sheng, Y.H.; Yu, J.T.; Shi, H.C.; Qian, Y. High-carbohydrate wastewater treatment by IAL-CHS with immobilized Candida tropicalis. Process Biochem. 2005, 40, 857–863. [Google Scholar] [CrossRef]
- Coimbra, C.D.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr. Microbiol. 2009, 58, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Sugimori, D. Edible oil degradation by using yeast coculture of Rhodotorula pacifica ST3411 and Cryptococcus laurentii ST3412. Appl. Microbiol. Biotechnol. 2009, 82, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, L.A.; Farias, C.B.B.; Campos-Takaki, G.M. Co-Utilization of Canola Oil and Glucose on the Production of a Surfactant by Candida lipolytica. Curr. Microbiol. 2007, 54, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ge, G.; Wan, J.B. Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J. Environ. Sci. 2009, 21, 237–242. [Google Scholar] [CrossRef]
- Manuela, T.; Maurizio, C. Use of Pichia fermentans and Candida sp. strains for the biological treatment of stored olive mill wastewater. Biotechnol. Lett. 2011, 33, 2385–2390. [Google Scholar]
- Yang, M.; Zheng, S. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review. Biomass Bioenergy 2014, 64, 356–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.P.; Liu, M.M.; Tian, Z.; He, Z.L.; van Nostrand, J.D.; Ren, L.R.; Zhou, J.Z.; Yang, M. Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Wat. Res. 2013, 47, 6298–6308. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.Z.; Hesham, A.E.L.; Zhang, Y.; Liu, X.C.; Yang, M. Impacts of cell surface characteristics on population dynamics in a sequencing batch yeast reactor treating vegetable oil-containing wastewater. Appl. Microbiol. Biotechnol. 2011, 90, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Hesham, A.E.L.; Wang, Z.Y.; Zhang, Y.; Zhang, J.; Lv, W.Z.; Yang, M. Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann. Microbiol. 2006, 56, 109–112. [Google Scholar] [CrossRef]
- Zheng, S.K.; Yang, M.; Li, P.R. Seed yeast cultivation for salad oil manufacturing wastewater treatment. J. Environ. Sci. 2002, 14, 39–43. [Google Scholar]
- Wei, F.S. Monitoring and Analysis Methods of Water and Wastewater; Chinese Environmental Sciences Publishment: Beijing, China, 2002. [Google Scholar]
- Róna, K.; Klausz, G.; Keller, E.; Szakay, M.; Laczay, P.; Shem-Tov, M.; Székely-Körmöczy, P. Determination of paromomycin residues in turkey tissues by liquid chromatography/mass spectrometry. J. Chromatogr. B 2009, 877, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Polz, M.F.; Harbison, C.; Cavanaugh, C.M. Diversity and heterogeneity of epibiotic bacterial communities on the marine nematode Eubostrichus dianae. Appl. Environ. Microbiol. 1999, 65, 4271–4275. [Google Scholar] [PubMed]
- O’Brien, H.E.; Parrent, J.L.; Jackson, J.A.; Moncalvo, J.M.; Vilgalys, R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 2005, 71, 5544–5550. [Google Scholar]
- Koike, S.; Krapac, I.G.; Oliver, H.D. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 2007, 73, 4813–4823. [Google Scholar] [CrossRef] [PubMed]
- Prévost-bouré, N.C.; Christen, R.; Dequiedt, S.; Mougel, C.; Leliévre, M.; Jolivet, C.; Shahbazkia, H.R.; Guillou, L.; Dominique, A.; Lionel, R. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 2011. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L.; Zhang, S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ. Sci. Technol. 2012, 46, 7551–7557. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.K.; Zhang, Y.; Tong, T.; Cui, C.; Sun, J. Dominance of yeast in activated sludge under acidic pH and high organic loading. Biochem. Eng. J. 2010, 52, 282–288. [Google Scholar] [CrossRef]
- Yang, S.F.; Li, X.Y.; Yu, H.Q. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem. 2008, 43, 8–14. [Google Scholar] [CrossRef]
- Deng, Y.Q.; Zhang, Y.; Gao, Y.X.; Li, D.; Liu, R.Y.; Liu, M.M.; Zhang, H.; Hu, B.; Yu, T.; Yang, M. Microbial community compositional analysis for series reactors treating high level antibiotic wastewater. Environ. Sci. Technol. 2012, 46, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, M.; Hann, T.; Gessner, M.O.; Schulz, R. Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environ. Toxicol. Chem. 2009, 28, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Demoling, L.A.; Baath, E.; Greve, G.; Wouterse, M.; Schmitt, H. Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol. Biochem. 2009, 41, 840–848. [Google Scholar] [CrossRef]
- Zielezny, Y.; Groeneweg, J.; Vereecken, H.; Tappe, W. Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol. Biochem. 2006, 38, 2372–2380. [Google Scholar] [CrossRef]
- Yang, Q.X.; Zhang, H.; Li, X.L.; Wang, Z.; Xu, Y.; Ren, S.W.; Chen, X.Y.; Xu, Y.Y.; Hao, H.X.; Wang, H.L. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresour. Technol. 2013, 129, 264–273. [Google Scholar] [CrossRef] [PubMed]
Inoculation Strains | Registration Number | Sample Source |
---|---|---|
Candida tropicalis | CGMCC 2.2158 | Salad oil-manufacturing factory |
Candida boidinii | CGMCC 2.2162 | |
Trichosporon asahii | CGMCC 2.2164 | |
Williopsis saturnus | CGMCC 2.2165 | |
Pichia anomala | CGMCC 2.4177 | Oil contaminated soil samples |
Yarrowia lipolytica | CGMCC 2.1207 | China General Microbiological Culture Collection Center |
Genes | Detection Limit of Method (copies per ng DNA) | R2 | Slope | Efficiency * (%) |
---|---|---|---|---|
Bacterial 16S rRNA gene | 4.7 × 102 | 0.99 | −3.24 | 103 |
Eukaryal 18S rRNA gene | 2.3 × 102 | 0.99 | −3.32 | 98 |
Parameter | Influent Mixture |
---|---|
Paromomycin (mg/L) | 10.85 ± 1.8 |
SCOD (mg/L) | 28,000 ± 56 |
Oil (mg/L) | 13,800 ± 38 |
SS (mg/L) | 20,030 ± 45 |
SV (%) | 91 ± 3 |
pH | 5.26 ± 0.4 |
NH4+–N (mg/L) | 317.1 ± 13 |
TN (mg/L) | 921.9 ± 22 |
SO42− (mg/L) | 8700 ± 36 |
Clone Library | Phylum | Genus | No. of OTUs (No. of Clones) | |
---|---|---|---|---|
Pilot-scale | Full-scale | |||
Eukarya | Ascomycota | Pichia | 1 (56) | − |
Candida | 2 (26) | 1 (65) | ||
Williopsis | 1 (19) | − | ||
Yarrowia | 1 (4) | − | ||
Bacteria | Firmicutes | Lactobacillus | ND* | 2 (72) |
Genes | Pretreatment System for Paromomycin Wastewater (copies/ng DNA) | SBR for Oxytetracycline Mother Liquor [21] (copies/uL DNA) | Biological Contact Oxidation Tanks for Antibiotic-bearing (mainly streptomycin) Wastewater [32] (copies/g) | Oxidation Ditch for Antibiotic-bearing (mainly streptomycin) Wastewater [32] (copies/g) | Inosine [21] (copies/uL DNA) |
---|---|---|---|---|---|
Bacterial 16S rRNA gene | 0.71 × 105 | 5.99 ×107 | 1.59 × 1010 | 1.96 × 1010 | 1.78 × 108 |
Eukaryal 18S rRNA gene | 0.11 × 107 | 3.35 × 106 | 2.39 × 109 | 1.17 × 109 | 3.33 × 104 |
Eukarya/Bacteria | 14.87 | 0.056 | 0.15 | 0.06 | 1.87 × 10−4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Ding, R.; Gao, Y.; Yang, M.; Zhang, Y. Performance and Yeast Tracking in A Full-Scale Oil-Containing Paromomycin Production Wastewater Treatment System Using Yeast. Water 2017, 9, 295. https://doi.org/10.3390/w9040295
Wang C, Ding R, Gao Y, Yang M, Zhang Y. Performance and Yeast Tracking in A Full-Scale Oil-Containing Paromomycin Production Wastewater Treatment System Using Yeast. Water. 2017; 9(4):295. https://doi.org/10.3390/w9040295
Chicago/Turabian StyleWang, Chunyan, Ran Ding, Yingxin Gao, Min Yang, and Yu Zhang. 2017. "Performance and Yeast Tracking in A Full-Scale Oil-Containing Paromomycin Production Wastewater Treatment System Using Yeast" Water 9, no. 4: 295. https://doi.org/10.3390/w9040295
APA StyleWang, C., Ding, R., Gao, Y., Yang, M., & Zhang, Y. (2017). Performance and Yeast Tracking in A Full-Scale Oil-Containing Paromomycin Production Wastewater Treatment System Using Yeast. Water, 9(4), 295. https://doi.org/10.3390/w9040295