Design and Operation of Decentralized Reservoirs in Urban Drainage Systems
Abstract
:1. Introduction
2. Methodology
2.1. Monitoring Node Selection
2.2. Generation of Synthetic Rainfall Data
2.3. Alteration of Inlet Type in the DR
2.4. Determination of DR Operational Level
3. Target Area and Rainfall Runoff Model
4. Application Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, E.H.; Lee, Y.S.; Joo, J.G.; Jung, D.; Kim, J.H. Flood Reduction in Urban Drainage Systems: Cooperative Operation of Centralized and Decentralized Reservoirs. Water 2016, 8, 469. [Google Scholar] [CrossRef]
- Chung, J.H.; Han, K.Y.; Kim, K.S. Optimization of detention facilities by using multi-objective genetic algorithms. J. Korea Water Resour. Assoc. 2008, 41, 1211–1218. [Google Scholar] [CrossRef]
- AL-Hamati, A.A.N.; Ghazali, A.H.; Mohammed, T.A. Determination of storage volume required in a sub-surface stormwater detention/retention system. J. Hydrol. Environ. Res. 2010, 4, 47–53. [Google Scholar] [CrossRef]
- Chill, J.; Mays, L.W. Determination of the optimal location for developments to minimize detention requirements. Water Resour. Manag. 2013, 27, 5089–5100. [Google Scholar]
- Tao, T.; Wang, J.; Xin, K.; Li, S. Multi-objective optimal layout of distributed storm-water detention. Int. J. Environ. Sci. Technol. 2014, 11, 1473–1480. [Google Scholar] [CrossRef]
- Coombes, P.J. The Use of Rainwater Tanks as a Supplement or Replacement for Onsite Stormwater Detention (OSD) in the Knox area of Victoria. In Proceedings of the H2009: 32nd Hydrology and Water Resources Symposium, Newcastle, Australia, 30 November–3 December 2009. [Google Scholar]
- Lucas, S.A.; Coombes, P.J. The Performance of Infiltration Trenches Constructed to Manage Stormwater Runoff from an Existing Urbanised Catchment. In Proceedings of the H2009: 32nd Hydrology and Water Resources Symposium, Newcastle, Australia, 30 November–3 December 2009. [Google Scholar]
- Lucas, S.A.; Coombes, P.J. Mains water savings and stormwater management benefits from large architecturally-designed under-floor rainwater storages. In Proceedings of the SSEE 2009: Solutions for a Sustainable Planet, Melbourne, Australia, 23–24 November 2009. [Google Scholar]
- Coombes, P.J. Transitioning Drainage into Urban Water Cycle Management. In Proceedings of the 9th International Water Sensitive Urban Design (WSUD), Newcastle, Australia, 19–23 October 2015. [Google Scholar]
- Coombes, P.J.; Downes, G. A decade of observations of local water cycle management at the Buderim Escape project. In Proceedings of the 36th Hydrology and Water Resources Symposium: The art and science of water, Hobart, Australia, 7–10 December 2015. [Google Scholar]
- Van der Sterren, M.; Rahman, A. Single lot on site detention requirements in New South Wales Australia and its relation to holistic storm water management. Sustain. Water Qual. Ecol. 2015, 6, 48–56. [Google Scholar] [CrossRef]
- Coombes, P.J.; Babister, M.; McAlister, T. Is the science and data underpinning the rational method robust for use in evolving urban catchments. In Proceedings of the 36th Hydrology and Water Resources Symposium: The art and science of water, Hobart, Australia, 7–10 December 2015. [Google Scholar]
- Matos Silva, M.; Costa, J.P. Flood Adaptation Measures Applicable in the Design of Urban Public Spaces: Proposal for a Conceptual Framework. Water 2016, 8, 284. [Google Scholar] [CrossRef]
- Graber, S.D. Generalized method for storm-water pumping station design. J. Hydrol. Eng. 2010, 15, 901–908. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chen, S.H.; Chang, T.J. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef]
- Cembrano, G.; Quevedo, J.; Salamero, M.; Puig, V.; Figueras, J.; Martı, J. Optimal control of urban drainage systems. A case study. Control Eng. Pract. 2004, 12, 1–9. [Google Scholar] [CrossRef]
- Fuchs, L.; Beeneken, T. Development and implementation of a real-time control strategy for the sewer system of the city of Vienna. Water Sci. Technol. 2005, 52, 187–194. [Google Scholar] [PubMed]
- Pleau, M.; Colas, H.; Lavallée, P.; Pelletier, G.; Bonin, R. Global optimal real-time control of the Quebec urban drainage system. Environ. Modell. Softw. 2005, 20, 401–413. [Google Scholar] [CrossRef]
- Vanrolleghem, P.A.; Benedetti, L.; Meirlaen, J. Modelling and real-time control of the integrated urban wastewater system. Environ. Modell. Softw. 2005, 20, 427–442. [Google Scholar]
- Galelli, S.; Goedbloed, A.; Schwanenberg, D.; van Overloop, P.J. Optimal real-time operation of multipurpose urban reservoirs: Case study in Singapore. J. Water Res. Plan. 2012, 140, 511–523. [Google Scholar] [CrossRef]
- Fiorelli, D.; Schutz, G.; Klepiszewski, K.; Regneri, M.; Seiffert, S. Optimised real time operation of a sewer network using a multi-goal objective function. Urban Water J. 2013, 10, 342–353. [Google Scholar] [CrossRef]
- Hsu, N.S.; Huang, C.L.; Wei, C.C. Intelligent real-time operation of a pumping station for an urban drainage system. J. Hydrol. 2013, 489, 85–97. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G. On pre-filling probability of flood control detention facilities. Urban Water J. 2015, 12, 344–351. [Google Scholar] [CrossRef]
- Tellez-Castro, D.; Quijano, N.; Mojica-Nava, E. Decentralized control for urban drainage systems via moving horizon observer. In Proceedings of the 2016 IEEE Conference, Seattle, WA, USA, 27–30 June 2016. [Google Scholar]
- Kuczera, G.; Coombes, P.J. Towards continuous simulation: A comparative assessment of flood performance of volume-sensitive systems. In Proceedings of the SIA 2002 Conference of Stormwater Management: Orange, New South Wales, Australia, 23–24 April 2002. [Google Scholar]
- Kundzewicz, Z.W. Non-structural flood protection and sustainability. Water Int. 2002, 27, 3–13. [Google Scholar] [CrossRef]
- Simonovic, S.P. Two new non-structural measures for sustainable management of floods. Water Int. 2002, 27, 38–46. [Google Scholar] [CrossRef]
- Bruen, M.; Yang, J. Combined hydraulic and black-box models for flood forecasting in urban drainage systems. J. Hydrol. Eng. 2006, 11, 589–596. [Google Scholar] [CrossRef]
- Martin, C.; Ruperd, Y.; Legret, M. Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. Eur. J. Oper. Res. 2007, 181, 338–349. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Meierdiercks, K.L.; Miller, A.J.; Krajewski, W.F. Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour. 2007, 30, 2087–2097. [Google Scholar] [CrossRef]
- Thampapillai, D.J.; Musgrave, W.F. Flood damage mitigation: A review of structural and nonstructural measures and alternative decision frameworks. Water Resour. Res. 1985, 21, 411–424. [Google Scholar] [CrossRef]
- Marsalek, J.; Barnwell, T.O.; Geiger, W.; Grottker, M.; Huber, W.C.; Saul, A.J.; Schilling, W.; Torno, H.C. Urban drainage systems: Design and operation. Water Sci. Technol. 1993, 27, 31–70. [Google Scholar]
- Pielke, R.A. Nine fallacies of floods. Clim. Chang. 1999, 42, 413–438. [Google Scholar] [CrossRef]
- Gruntfest, E. Nonstructural mitigation of flood hazards. In Inland Flood Hazards: Human Riparian and Aquatic Communities; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Poussin, J.K.; Bubeck, P.; Aerts, J.C.J.H.; Ward, P.J. Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: Case study for the Meuse. Nat. Hazards Earth Syst. Sci. 2012, 12, 3455. [Google Scholar] [CrossRef]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Korea Precipitation Frequency Data Server. Available online: www.k-idf.re.kr (accessed on 30 March 2017).
- Yoon, Y.N.; Jung, J.H.; Ryu, J.H. Introduction of design flood estimation. J. Korea Water Resour. Assoc. 2013, 46, 55–68. [Google Scholar]
- Seoul Metropolitan Government. Report on Design and Expansion of Daerim 3 Pump Station; Seoul Metropolitan Government: Seoul, Korea, 2010.
- Ministry of Public Safety and Security. The Disaster Year Book; Ministry of Public Safety and Security: Seoul, Korea, 2010.
- Ministry of Public Safety and Security. The Disaster Year Book; Ministry of Public Safety and Security: Seoul, Korea, 2011.
- United States Environmental Protection Agency (USEPA). Storm Water Management Model User’s Manual Version 5.0; EPA: Washington DC, USA, 2010.
- Yeongdeungpo-Gu. Report on Design of Daerim Detention Reservoir; Yeongdeungpo-Gu: Seoul, Korea, 2007. [Google Scholar]
- Korea Water and Wastewater Works Association. Standard on Sewer Facility; Ministry of Environment: Seoul, Korea, 2011.
Structural Measures | Non-Structural Measures | Combined Measures | Combined Measures in Decentralized Reservoir |
---|---|---|---|
AL-Hamati et al. (2010) [3] Chill and Mays (2013) [4] Chung et al. (2008) [2] Coombes (2009) [6] Coombes (2015) [9] Coombes and Downes (2015) [10] Graber (2010) [14] Matos Silva and Costa (2016) [13] Lucas and Coombes (2009) [7] Tao et al. (2014) [5] Van der Sterren and Rahman (2015) [11] | Bruen and Yang (2006) [28] Cembrano et al. (2004) [16] Fiorelli et al. (2013) [21] Fuchs and Beeneken (2005) [17] Galelli et al. (2012) [20] Hsu et al. (2000) [15] Hsu et al. (2013) [22] Kuczera and Coombes (2002) [25] Kundzewicz (2002) [26] Lee et al. (2016) [1] Martin et al. (2007) [29] Simonovic (2002) [27] Smith et al. (2007) [30] Pleau et al. (2005) [18] Raimondi and Becciu (2015) [23] Tellez-Castro et al. (2016) [24] Vanrolleghem et al. (2005) [19] | Gruntfest (2000) [34] Marsalek et al. (1993) [32] Pielke (1999) [33] Poussin et al. (2012) [35] Thampapillai and Musgrave (1985) [31] | This study |
Frequency (Year) | Duration (h) | Level of Monitoring Nodes (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | ||
30 | 1 | 0.976811 | 0.976621 | 0.975778 | 0.976686 | 0.976172 | 0.976251 | 0.976352 | 0.976259 |
2 | 0.964705 | 0.964773 | 0.965201 | 0.96519 | 0.965415 | 0.965086 | 0.965402 | 0.965646 | |
3 | 0.973304 | 0.973507 | 0.973062 | 0.973691 | 0.973854 | 0.973992 | 0.97392 | 0.973962 | |
50 | 1 | 0.963912 | 0.963607 | 0.963292 | 0.963387 | 0.96368 | 0.963705 | 0.963652 | 0.963675 |
2 | 0.944443 | 0.944335 | 0.944485 | 0.944406 | 0.945028 | 0.9442 | 0.94444 | 0.944805 | |
3 | 0.959146 | 0.958863 | 0.959394 | 0.958907 | 0.959789 | 0.959963 | 0.959656 | 0.959653 | |
80 | 1 | 0.947714 | 0.948491 | 0.948231 | 0.947996 | 0.94817 | 0.947891 | 0.948163 | 0.948089 |
2 | 0.924426 | 0.92451 | 0.924551 | 0.924161 | 0.92509 | 0.925087 | 0.924854 | 0.925132 | |
3 | 0.942119 | 0.942488 | 0.942498 | 0.942407 | 0.942104 | 0.942677 | 0.941117 | 0.942674 | |
100 | 1 | 0.940061 | 0.940262 | 0.938688 | 0.940016 | 0.939854 | 0.940077 | 0.940115 | 0.93989 |
2 | 0.914608 | 0.914156 | 0.915503 | 0.915463 | 0.915451 | 0.915626 | 0.915527 | 0.914929 | |
3 | 0.93334 | 0.933331 | 0.934014 | 0.933816 | 0.934192 | 0.933979 | 0.934051 | 0.933925 |
Process | System Resilience Index | Best Hydraulic Section | Local Regulation | Possible Operating Level (m) |
---|---|---|---|---|
Range of level (m) | 1.2–1.5 | 1.2–1.5 | 1.0–1.2 | 1.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.H.; Kim, J.H. Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water 2017, 9, 246. https://doi.org/10.3390/w9040246
Lee EH, Kim JH. Design and Operation of Decentralized Reservoirs in Urban Drainage Systems. Water. 2017; 9(4):246. https://doi.org/10.3390/w9040246
Chicago/Turabian StyleLee, Eui Hoon, and Joong Hoon Kim. 2017. "Design and Operation of Decentralized Reservoirs in Urban Drainage Systems" Water 9, no. 4: 246. https://doi.org/10.3390/w9040246