Next Article in Journal
Design and Operation of Decentralized Reservoirs in Urban Drainage Systems
Previous Article in Journal
Erratum: Matos Silva, M.; Costa, J. Flood Adaptation Measures Applicable in the Design of Urban Public Spaces: Proposal for a Conceptual Framework. Water 2016, 8, 284
Open AccessArticle

Characterization of Droughts in Humid Subtropical Region, Upper Kafue River Basin (Southern Africa)

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
*
Author to whom correspondence should be addressed.
Academic Editor: Athanasios Loukas
Water 2017, 9(4), 242; https://doi.org/10.3390/w9040242
Received: 12 December 2016 / Revised: 25 March 2017 / Accepted: 26 March 2017 / Published: 31 March 2017
In this study, an integrated approach involving multiple standardized indicators and hydrological modeling (Soil and Water Assessment Tool, SWAT) was evaluated to reconstruct and characterize meteorological, agricultural and hydrological droughts in Upper Kafue River Basin of Zambia during 1984–2013. Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) were used to identify meteorological droughts. Standardized Soil Moisture Index (SSI) was applied to characterize agricultural droughts and Standardized Runoff Index (SRI) was calculated to illustrate hydrological droughts. Input data for SRI and SSI computation was obtained from SWAT model which simulated daily and monthly runoff well with Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) greater than 0.65. The results showed that: (1) all indices were able to detect temporal variability of major drought events in a humid subtropical basin in Southern Africa; (2) SWAT successfully simulated runoff and soil moisture although soil moisture requires further calibration to increase accuracy; (3) the average duration and intensity for meteorological droughts at three-month time scale were lower but frequencies were higher compared to agricultural and hydrological droughts at 3- and 12-month aggregates; and (4) drought events exhibited a negative trend as evaluated by Mann–Kendall on SPEI, indicating an increase in drought severity, and correlation analysis between SPEI and SRI revealed that SPEI at 9–15 months has a strong link with hydrological conditions. This study showed that a comprehensive assessment of droughts by integrating multiple variables provided a versatile tool for drought monitoring and mitigation. View Full-Text
Keywords: drought indices and characterization; hydrological modeling; Soil and Water Assessment Tool; humid subtropical region drought indices and characterization; hydrological modeling; Soil and Water Assessment Tool; humid subtropical region
Show Figures

Figure 1

MDPI and ACS Style

Lweendo, M.K.; Lu, B.; Wang, M.; Zhang, H.; Xu, W. Characterization of Droughts in Humid Subtropical Region, Upper Kafue River Basin (Southern Africa). Water 2017, 9, 242.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop