Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Precipitation Manipulation System
2.4. Sample Collection and Analysis
2.5. Data Analyses
3. Results
3.1. Precipitation Manipulation and Its Effects on Microenvironment
3.2. Gravimetric Soil Water Content
3.3. Soil Nitrogen Fractions
3.4. Plant Growth in Monglian Pine Plantation and Plant N Uptake
4. Discussion
4.1. How Did the Variation in Soil N Availability Occur?
4.2. Insights Relevant for Management and Further Study
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oreskes, N. The scientific consensus on climate change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ibrahim, B.; Karambiri, H.; Polcher, J.; Yacouba, H.; Ribstein, P. Changes in rainfall regime over Burkina Faso under the climate change conditions simulated by 5 regional climate models. Clim. Dyn. 2014, 42, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Hoover, D.L.; Wilcox, K.R.; Avolio, M.L.; Koerner, S.E.; La Pierre, K.J.; Loik, M.E.; Luo, Y.; Sala, O.E.; Smith, M.D. Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments. Glob. Chang. Biol. 2015, 21, 2624–2633. [Google Scholar] [CrossRef] [PubMed]
- Weltzin, J.F.; McPherson, G.R. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 2000, 81, 1902–1913. [Google Scholar] [CrossRef]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Lim, H.; Oren, R.; Palmroth, S.; Tor-Ngern, P.; Mörling, T.; Näsholm, T.; Lundmark, T.; Helmisaari, H.-S.; Leppälammi-Kujansuu, J.; Linder, S. Inter-annual variability of precipitation constrains the production response of boreal Pinus sylvestris to nitrogen fertilization. For. Ecol. Manag. 2015, 348, 31–45. [Google Scholar] [CrossRef]
- Austin, A.T.; Vitousek, P.M. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 1998, 113, 519–529. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Virginia, R.A.; Kemp, P.R.; de Soyza, A.G.; Tremmel, D.C. Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development. Ecol. Monogr. 1999, 69, 69–106. [Google Scholar] [CrossRef]
- Yahdjian, L.; Sala, O.E.; Austin, A.T. Differential controls of water input on litter decomposition and nitrogen dynamics in the Patagonian steppe. Ecosystems 2006, 9, 128–141. [Google Scholar] [CrossRef]
- Cregger, M.A.; Schadt, C.W.; McDowell, N.G.; Pockman, W.T.; Classen, A.T. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl. Environ. Microb. 2012, 78, 8587–8594. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, U.N.; Ball, B.A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Chang. Biol. 2015, 21, 1407–1421. [Google Scholar] [CrossRef] [PubMed]
- Weltzin, J.F.; Belote, R.T.; Sanders, N.J. Biological invaders in a greenhouse world: Will elevated CO2 fuel plant invasions? Front. Ecol. Environ. 2003, 1, 146–153. [Google Scholar] [CrossRef]
- Bell, C.W.; Tissue, D.T.; Loik, M.E.; Wallenstein, M.D.; Acosta-Martinez, V.; Erickson, R.A.; Zak, J.C. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan desert grassland. Glob. Chang. Biol. 2014, 20, 1657–1673. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Parker, L.W.; Anderson, J.P.; Whitford, W.G. Nitrogen mineralization in a desert soil: Interacting effects of soil moisture and nitrogen fertilizer. Soil Sci. Soc. Am. J. 1987, 51, 1033–1041. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Gong, X.Y.; Chen, Q.; Lin, S.; Brueck, H.; Dittert, K.; Taube, F.; Schnyder, H. Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant Soil 2011, 340, 227–238. [Google Scholar] [CrossRef]
- Mazzarino, M.J.; Bertiller, M.B.; Sain, C.; Satti, P.; Coronato, F. Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes. Plant Soil 1998, 202, 125–131. [Google Scholar] [CrossRef]
- Austin, A.T.; Sala, O.E. Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. J. Veg. Sci. 2002, 13, 351–360. [Google Scholar] [CrossRef]
- Lauenroth, W.K.; Sala, O.E. Long-term forage production of North American shortgrass steppe. Ecol. Appl. 1992, 2, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Fay, P.A.; Carlisle, J.D.; Knapp, A.K.; Blair, J.M.; Collins, S.L. Altering rainfall timing and quantity in a mesic grassland ecosystem: Design and performance of rainfall manipulation shelters. Ecosystems 2000, 3, 308–319. [Google Scholar] [CrossRef]
- Peters, D.P.C. Plant species dominance at a grassland-shrubland ecotone: An individual-based gap dynamics model of herbaceous and woody species. Ecol. Model. 2002, 152, 5–32. [Google Scholar] [CrossRef]
- Neilson, R.P. Transient ecotone response to climatic change: Some conceptual and modelling approaches. Ecol. Appl. 1993, 3, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Milne, B.T.; Moore, D.I.; Betancourt, J.L.; Parks, J.A.; Swetnam, T.W.; Parmenter, R.R.; Pockman, W.T. Mulitdecadal drought cycles in south-central new mexico: Patterns and consequences. In Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites; Greenland, D., Goodin, D.G., Smith, R.C., Eds.; Oxford University Press: Oxford, UK, 2003; pp. 286–307. [Google Scholar]
- Kosaka, Y.; Xie, S.-P.; Nakamura, H. Dynamics of interannual variability in summer precipitation over East Asia. J. Clim. 2011, 24, 5435–5453. [Google Scholar] [CrossRef]
- Posada, J.M.; Schuur, E.A.G. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 2011, 165, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Yahdjian, L.; Sala, O.E. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 2002, 133, 95–101. [Google Scholar] [CrossRef]
- Yuan, J.; Ouyang, Z.; Zheng, H.; Xu, W. Effects of different grassland restoration approaches on soil properties in the southeastern Horqin Sandy Land, Northern China. Appl. Soil Ecol. 2012, 61, 34–39. [Google Scholar] [CrossRef]
- Zhu, J.J.; Zeng, D.H.; Kang, H.Z.; Wu, X.Y.; Fan, Z.P. Decline of Pinus Sylvestris var. Mongolica plantation on Sandy Land; China Forestry Publishing House: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Wei, Y.F.; Fang, J.; Liu, S.; Zhao, X.Y.; Li, S.G. Stable isotopic observation of water use sources of Pinus sylvestris var. Mongolica in Horqin Sandy Land, China. Trees 2013, 27, 1249–1260. [Google Scholar]
- Zeng, D.H.; Li, L.J.; Fahey, T.J.; Yu, Z.Y.; Fan, Z.P.; Chen, F.S. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. Biogeochemistry 2010, 98, 185–193. [Google Scholar] [CrossRef]
- Chen, F.-S.; Zeng, D.-H.; Fahey, T.J.; Liao, P.-F. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Appl. Soil Ecol. 2010, 44, 42–48. [Google Scholar] [CrossRef]
- Chen, F.S.; Zeng, D.H.; Zhou, B.; Singh, A.N.; Fan, Z.P. Seasonal variation in soil nitrogen availability under Mongolian pine plantations at the Keerqin Sand Lands, China. J. Arid Environ. 2006, 67, 226–239. [Google Scholar] [CrossRef]
- Zhao, Q.; Zeng, D.H.; Lee, D.K.; He, X.Y.; Fan, Z.P.; Jin, Y.H. Effects of Pinus sylvestris var. Mongolica afforestation on soil phosphorus status of the Keerqin Sandy Lands in China. J. Arid Environ. 2007, 69, 569–582. [Google Scholar] [CrossRef]
- Zhang, J.C.; Wang, J.; Li, A.D.; E, Y.H. Resesrch on root distribution and growth adaptability of Pinus sylvestris var. Mongolica. Prot. For. Sci. Technol. 2000, 44, 46–49. (In Chinese) [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Methods of Soil Analysis, 2nd ed.; Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Meredith, M.P.; Stehman, S.V. Repeated measures experiments in forestry: Focus on analysis of response curves. Can. J. For. Res. 1991, 21, 957–965. [Google Scholar] [CrossRef]
- McGill, W.B.; Cannon, K.R.; Robertson, J.A.; Cook, F.D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 1986, 66, 1–19. [Google Scholar] [CrossRef]
- Dungait, J.A.J.; Ghee, C.; Rowan, J.S.; McKenzie, B.M.; Hawes, C.; Dixon, E.R.; Paterson, E.; Hopkins, D.W. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biol. Biochem. 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Garcia, F.O.; Rice, C.W. Microbial biomass dynamics in tallgrass prairie. Soil Sci. Soc. Am. J. 1994, 58, 816–823. [Google Scholar] [CrossRef]
- Foote, J.A.; Boutton, T.W.; Scott, D.A. Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management. For. Ecol. Manag. 2015, 355, 48–57. [Google Scholar] [CrossRef]
- Mureithi, S.M.; Verdoodt, A.; Gachene, C.K.K.; Njoka, J.T.; Wasonga, V.O.; De Neve, S.; Meyerhoff, E.; Van Ranst, E. Impact of enclosure management on soil properties and microbial biomass in a restored semi-arid rangeland, Kenya. J. Arid Land 2014, 6, 561–570. [Google Scholar] [CrossRef]
- Fisher, F.M.; Whitford, W.G. Field simulation of wet and dry years in the Chihuahuan desert: Soil moisture, n mineralization and ion-exchange resin bags. Biol. Fertil. Soils 1995, 20, 137–146. [Google Scholar] [CrossRef]
- Wei, L.; Chen, C.; Yu, S. Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native araucariaceae species. Plant Ecol. Divers. 2015, 8, 259–264. [Google Scholar] [CrossRef]
- Austin, A.T. Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawaii. Ecology 2002, 83, 328–338. [Google Scholar]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Brookshire, E.N.J.; Gerber, S.; Menge, D.N.L.; Hedin, L.O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 2012, 15, 9–16. [Google Scholar] [CrossRef] [PubMed]
- West, N.E.; Skujins, J. Nitrogen in Desert Ecosystems; Dowden, Hutchinson & Ross, Inc.: Stroudsburg, PA, USA, 1978. [Google Scholar]
- Peterjohn, W.T.; Schlesinger, W.H. Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 1990, 10, 67–79. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Phillips, F.M.; Stonestrom, D.A.; Evans, R.D.; Hartsough, P.C.; Newman, B.D.; Striegl, R.G. A reservoir of nitrate beneath desert soils. Science 2003, 302, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, X.; Mo, J.; Sheng, G.; Fu, J. Soil nitric oxide emissions from two subtropical humid forests in South China. J. Geophys. Res. Atmos. 2007, 112, 209–232. [Google Scholar] [CrossRef]
- Mosier, A.R. Soil processes and global change. Biol. Fertil. Soils 1998, 27, 221–229. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res. Atmos. 2004, 109, D17302. [Google Scholar] [CrossRef]
- Pilegaard, K.; Skiba, U.; Ambus, P.; Beier, C.; Brüggemann, N.; Butterbach-Bahl, K.; Dick, J.; Dorsey, J.; Duyzer, J.; Gallagher, M.; et al. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 2006, 3, 651–661. [Google Scholar] [CrossRef]
- Svejcar, T.; Angell, R.; Miller, R. Fixed location rain shelters for studying precipitation effects on rangelands. J. Arid Environ. 1999, 42, 187–193. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, D.; Chen, X.; Wang, J.; Diao, J.J.; Zhang, J.Y.; Guan, Q.W. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl. Soil Ecol. 2015, 92, 35–44. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C.; Wang, Y.; Xu, Z.; Duan, J.; Hao, Y.; Smaill, S. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma 2013, 206, 24–31. [Google Scholar] [CrossRef]
- Lin, G.G.; Zhao, Q.; Zhao, L.; Li, H.C.; Zeng, D.H. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land. Chin. J. Appl. Ecol. 2012, 23, 1188–1194. (In Chinese) [Google Scholar]
- Mao, B.; Mao, R.; Hu, Y.L.; Huang, Y.; Zeng, D.H. Decomposition of Mongolian pine litter in the presence of understory species in semi-arid Northeast China. J. For. Res. 2016, 27, 329–337. [Google Scholar] [CrossRef]
- Ren, H.; Xu, Z.; Huang, J.; Lü, X.; Zeng, D.H.; Yuan, Z.; Han, X.; Fang, Y. Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant Soil 2015, 389, 211–223. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhao, Q.; Zhao, X.R.; Zeng, D.H.; Ai, G.Y. Effects of litter manipulation on soil microbial community structure in Pinus sylvestris var. mongolica plantation. Chin. J. Appl. Ecol. 2015, 34, 2605–2612. (In Chinese) [Google Scholar]
- Liu, Y.X.; Hu, Y.L.; Zeng, D.H.; Fan, Z.P.; Zhao, Q. Effects of grassland afforestation with Mongolian pine on soil chemical and biological properties in Keerqin Sandy Land. Chin. J. Appl. Ecol. 2010, 21, 814–820. (In Chinese) [Google Scholar]
Year | AT (°C) | ST (°C) | RH (%) | PAR (µmol·m−2·s−1) | |||||
---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | ||||
Average | DRY | 28.1 ± 0.5 | 21.9 ± 0.3 | 26.3 ± 0.1 | 23.4 ± 0.1 | 67.1 ± 0.6 | 91.8 ± 0.3 | 1450 ± 66 | |
CK | 27.5 ± 0.3 | 21.9 ± 0.2 | 23.7 ± 0.1 | 20.8 ± 0.0 | 69.4 ± 0.4 | 90.8 ± 0.4 | 1732 ± 30 | ||
WET | 27.7 ± 0.3 | 21.7 ± 0.1 | 23.7 ± 0.1 | 20.7 ± 0.0 | 70.0 ± 0.5 | 90.9 ± 0.4 | 1707 ± 45 | ||
2014 | Maximum | DRY | 31.1 ± 0.2 | 26.3 ± 0.1 | 28.0 ± 0.1 | 24.4 ± 0.2 | 84.7 ± 0.4 | 97.3 ± 0.5 | - |
CK | 30.7 ± 0.3 | 26.3 ± 0.2 | 24.5 ± 0.3 | 22.0 ± 0.3 | 85.5 ± 0.4 | 97.6 ± 0.6 | - | ||
WET | 30.1 ± 0.2 | 26.3 ± 0.2 | 24.5 ± 0.2 | 21.8 ± 0.2 | 85.3 ± 0.5 | 97.8 ± 0.4 | - | ||
Minimum | DRY | 24.4 ± 0.2 | 21.0 ± 0.1 | 24.6 ± 0.5 | 21.0 ± 0.4 | 55.9 ± 0.4 | 70.8 ± 0.5 | - | |
CK | 24.0 ± 0.1 | 21.0 ± 0.2 | 22.4 ± 0.3 | 19.5 ± 0.3 | 58.1 ± 0.3 | 70.3 ± 0.6 | - | ||
WET | 24.0 ± 0.1 | 20.6 ± 0.1 | 22.5 ± 0.4 | 19.5 ± 0.3 | 57.8 ± 0.4 | 70.5 ± 0.3 | - | ||
Average | DRY | 26.5 ± 0.2 | 20.8 ± 0.1 | 24.4 ± 0.1 | 22.1 ± 0.2 | 70.6 ± 0.3 | 93.6 ± 0.3 | 1560 ± 47 | |
CK | 26.2 ± 0.2 | 20.7 ± 0.2 | 22.9 ± 0.2 | 20.1 ± 0.3 | 72.8 ± 0.2 | 92.6 ± 0.2 | 1705 ± 31 | ||
WET | 26.3 ± 0.1 | 20.5 ± 0.3 | 22.8 ± 0.3 | 20.1 ± 0.3 | 73.5 ± 0.5 | 92.7 ± 0.1 | 1713 ± 42 | ||
2015 | Maximum | DRY | 29.4 ± 0.4 | 24.9 ± 0.2 | 27.1 ± 0.3 | 23.4 ± 0.2 | 88.8 ± 0.2 | 96.2 ± 0.2 | - |
CK | 29.1 ± 0.2 | 24.5 ± 0.5 | 23.6 ± 0.2 | 21.2 ± 0.5 | 89.7 ± 0.3 | 96.6 ± 0.2 | - | ||
WET | 28.5 ± 0.1 | 24.6 ± 0.2 | 23.4 ± 0.2 | 21.1 ± 0.1 | 89.5 ± 0.3 | 96.5 ± 0.3 | - | ||
Minimum | DRY | 23.2 ± 0.3 | 19.9 ± 0.3 | 23.7 ± 0.3 | 20.2 ± 0.2 | 58.6 ± 0.2 | 72.1 ± 0.3 | - | |
CK | 22.7 ± 0.4 | 19.5 ± 0.3 | 21.6 ± 0.2 | 18.8 ± 0.3 | 61.1 ± 0.1 | 71.6 ± 0.2 | - | ||
WET | 22.6 ± 0.2 | 19.6 ± 0.2 | 21.5 ± 0.5 | 18.7 ± 0.2 | 60.6 ± 0.2 | 71.9 ± 0.5 | - |
Year | Treatment | June | July | August | September | October |
---|---|---|---|---|---|---|
DRY | 0.040 ± 0.005a | 0.099 ± 0.009a | 0.410 ± 0.010a | 0.198 ± 0.008a | 0.302 ± 0.007a | |
2014 | CK | 0.068 ± 0.003b | 0.231 ± 0.008b | 0.623 ± 0.016b | 0.293 ± 0.015b | 0.418 ± 0.005b |
WET | 0.125 ± 0.006c | 0.336 ± 0.053c | 0.766 ± 0.011c | 0.425 ± 0.010c | 0.534 ± 0.020c | |
DRY | 0.083 ± 0.012A | 0.167 ± 0.014A | 0.217 ± 0.014A | 0.186 ± 0.010A | 0.143 ± 0.009A | |
2015 | CK | 0.204 ± 0.021B | 0.368 ± 0.022B | 0.686 ± 0.048B | 0.695 ± 0.036B | 0.271 ± 0.018B |
WET | 0.311 ± 0.060C | 0.751 ± 0.034C | 0.942 ± 0.020C | 0.818 ± 0.045C | 0.342 ± 0.016C |
Source of Variation | SWC | NH4+-N | NO3−-N | Inorganic N | MBN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | df | F | p | df | F | p | |
Treatment | 2 | 991.95 | <0.001 | 2 | 109.80 | <0.001 | 2 | 74.95 | <0.001 | 2 | 148.06 | <0.001 | 2 | 168.32 | <0.001 |
Month | 4 | 908.81 | <0.001 | 4 | 450.50 | <0.001 | 4 | 63.74 | <0.001 | 4 | 219.67 | <0.001 | 3 | 83.10 | <0.001 |
Treatment × Month | 8 | 58.70 | <0.001 | 8 | 13.52 | <0.001 | 8 | 4.92 | <0.001 | 8 | 12.60 | <0.001 | 6 | 4.79 | <0.001 |
Pearson | NH4+-N | NO3−-N | Inorganic N | MBN |
---|---|---|---|---|
NH4+-N | 1 | 0.255 ns | 0.968 ** | –0.668 * |
NO3−-N | - | 1 | 0.489 ns | –0.679 * |
Inorganic N | - | - | 1 | 0.778 ** |
MBN | - | - | - | 1 |
Year | Treatment | Height Increment (m·year−1) | DBH Increment (m·year−1) | ANPP (g·m−2) | Root Biomass (g·m−2) |
---|---|---|---|---|---|
DRY | 0.28 ± 0.08a | 0.27 ± 0.08a | 242.66 ± 12.59a | 538.44 ± 34.27a | |
2014 | CK | 0.38 ± 0.03ab | 0.31 ± 0.05ab | 341.39 ± 14.89b | 809.70 ± 60.27b |
WET | 0.44 ± 0.02b | 0.36 ± 0.07b | 425.52 ± 14.29c | 980.89 ± 72.66c | |
DRY | 0.39 ± 0.07A | 0.28 ± 0.04A | 228.60 ± 16.19A | 555.49 ± 51.89A | |
2015 | CK | 0.51 ± 0.06B | 0.31 ± 0.02AB | 326.70 ± 13.86B | 857.12 ± 96.00B |
WET | 0.53 ± 0.06B | 0.38 ± 0.05B | 453.68 ± 10.29C | 1078.15 ± 86.90C |
Year | Treatment | Mp-N (g·m−2 Growing·Season−1) | U-N (g·m−2 Growing·Season−1) |
---|---|---|---|
DRY | 3.08 ± 0.05a | 9.30 ± 0.07a | |
2014 | CK | 5.11 ± 0.03b | 10.11 ± 0.08b |
WET | 5.83 ± 0.03b | 11.81 ± 0.07c | |
DRY | 4.13 ± 0.09A | 8.76 ± 0.02A | |
2015 | CK | 5.86 ± 0.07A | 9.68 ± 0.03B |
WET | 7.02 ± 0.03B | 12.59 ± 0.02C |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Tu, Z.; Li, F.; Qin, Y.; Deng, D.; Zeng, D.; Sun, X.; Zhao, Q.; Hu, Y. Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation. Water 2017, 9, 208. https://doi.org/10.3390/w9030208
Fan Z, Tu Z, Li F, Qin Y, Deng D, Zeng D, Sun X, Zhao Q, Hu Y. Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation. Water. 2017; 9(3):208. https://doi.org/10.3390/w9030208
Chicago/Turabian StyleFan, Zhiping, Zhihua Tu, Fayun Li, Yanbin Qin, Dongzhou Deng, Dehui Zeng, Xuekai Sun, Qiong Zhao, and Yalin Hu. 2017. "Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation" Water 9, no. 3: 208. https://doi.org/10.3390/w9030208
APA StyleFan, Z., Tu, Z., Li, F., Qin, Y., Deng, D., Zeng, D., Sun, X., Zhao, Q., & Hu, Y. (2017). Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation. Water, 9(3), 208. https://doi.org/10.3390/w9030208