Next Article in Journal
Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay
Previous Article in Journal
BRISENT: An Entropy-Based Model for Bridge-Pier Scour Estimation under Complex Hydraulic Scenarios
Open AccessTechnical Note

Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US

Agricultural Research Service, US Department of Agriculture, 808 E. Blackland Road, Temple, TX 76502, USA
Blackland Research & Extension Center, Texas A & M AgriLife, Temple, TX 76502, USA
Author to whom correspondence should be addressed.
Water 2017, 9(11), 892;
Received: 28 September 2017 / Revised: 9 November 2017 / Accepted: 11 November 2017 / Published: 15 November 2017
Model-based water quality assessments are an important informer of conservation and environmental policy in the U.S. The recently completed national scale Conservation Effects Assessment Project (CEAP) is being replicated using an improved model populated with new and higher resolution data. National assessments are particularly difficult as models must operate with both a very large spatial extent (the contiguous U.S.) while maintaining a level of granularity required to capture important small scale processes. In this research, we developed datasets to describe the hydrologic connectivity at the U.S. Geological Survey (USGS) 12-digit Hydrologic Unit Code (HUC-12) level. Connectivity between 86,000 HUC-12s as provided by the Watershed Boundary Dataset (WBD) was evaluated and corrected. We also detailed a method to resolve the highly detailed National Hydrography Dataset (NHD) stream segments within each HUC-12 into vastly simplified representative channel schemes suitable for use in the recently developed Soil and Water Assessment Tool + (SWAT+) model. This representative channel approach strikes a balance between computational complexity and accurate representation of the hydrologic system. These data will be tested in the upcoming CEAP II national assessment. Until then, all the WBD corrections and NHDPlus representative channel data are provided via the web for other researchers to evaluate and utilize. View Full-Text
Keywords: SWAT+; CEAP; connectivity; hydrology; tributary; channel SWAT+; CEAP; connectivity; hydrology; tributary; channel
Show Figures

Figure 1

MDPI and ACS Style

White, M.J.; Beiger, K.; Gambone, M.; Haney, E.; Arnold, J.; Gao, J. Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US. Water 2017, 9, 892.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop