Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health
Abstract
:1. Introduction
2. Fog—Physical Basis, General Characterization, and Classification
2.1. Physical Basis of the Fog
2.2. Water Condensation Process: Droplet Nucleation—Conditions and Analysis
- In industrial plumes and the free troposphere, the main nucleation mechanism is homogeneous binary water-sulfuric acid nucleation;
- In the continental boundary layer, the most common one is homogeneous ternary water-sulfuric acid-ammonia nucleation;
- In the upper troposphere and lower stratosphere, ion-induced nucleation of binary or ternary inorganic vapors or of organic vapors take place;
- In coastal regions, the main mechanism is barrierless homogeneous nucleation of iodide species.
- Fine particles:
- ○
- Nucleation mode: 0.001–0.01 µm,
- ○
- Aitken mode: 0.01–0.1 µm,
- ○
- Accumulation mode: 0.1–(1 to 2.5) µm,
- Coarse mode: >(1 to 2.5) µm,
- Giant particles: >10 µm.
- Monocarboxylic acids (MCA) and dicarboxylic acids (DCA)—species observed predominantly in the gas phase, aerosols, precipitation-, cloud- and fog water, are the formic and acetic acids (belonging to MCA). In aerosol particles, DCA (oxalic acid, malonic, succinic acid) dominate, constituting only a small fraction of the total particulate water-soluble organic components in the atmosphere [26].
- Humic-like substances (HULIS)—fine particles with good water solubility consisting of polysaccharide and aliphatic substructures. Major components of continental organic aerosols are HULIS, which can also be of biogenic origin. They are considered as affecting the aerosol hygroscopicity, as well as the formation of CCN. HULIS have also been identified in fog droplets with a scavenging ratio similar to that of inorganic ions [26].
- Bacteria (0.25–8 µm in diameter)—a group of very metabolically diverse, prokaryotic, unicellular microorganisms. Sources of bacteria are found to be temperate vegetation zones, as raw crop areas (high primary production) and desert areas (relatively low production). Living and dead bacteria have been observed in clouds and fog, raindrops and hailstones, as well as in different parts of the atmosphere—boundary layer, upper troposphere, stratosphere (up to 41 km above sea level). Among the bacteria able to act as CCN at low saturation ratios (from 0.07% to 1%) are plant pathogenic bacteria Erwinia carotovora, as well as Gram-positive and Gram-negative bacteria—Micrococcus agilis, Mycoplana bullata, and Brevundimonas diminuta [26].
- Total and dissolved organic carbon (TOC and DOC)—significant amounts of organic carbon (C) have been found in fog and clouds. Its concentration varies from 1 mg C/L (in remote marine environments) to 100 mg C/L (in polluted radiation fogs). Very high concentrations, between 100 and 200 mg C/L, have been measured in biomass burning impacted clouds. In fog droplets, most of the organic matter is considered to be DOC [27].
3. Formation and Types of Fog
3.1. Fog Types by Phase of Droplet
3.2. Fog Types by the Kind of Particles: Radioactive and Chemical Fogs
3.3. Fog Types by Dynamical Origin
4. The Effect of the Water-Vapor Partial Pressure on the Surface Tension and Freezing Point of the Liquid Water-Air Interface
5. Fog Modeling and Forecasting
6. Fog Impacts
6.1. Impacts on Air Quality
6.2. Impacts of Fog on Human Health
- 24 h PM10 levels exceeded 150 µg/m3, the average number of admissions of children nearly tripled; in adults, the increase in admissions was 44%
- Mean PM10 levels were greater than or equal to 50 µg/m3, the average number of admissions for children and adults increased by 89% and 47%, respectively.
- SO2 influences the respiratory system in a way similar to nitrogen oxides.
- CO affects the cardiovascular system, binding hemoglobin to modify its conformation and reduce its capacity to transfer oxygen, which in turn affects both the brain and heart. CO causes impaired concentration, confusion, slow reflexes, hypoxia in the nervous system, affects the muscular system [7,87].
- Volatile organic components, such as benzene, for example, induce hematological problems [7] affect the central nervous system, cause anemia, lymphopenia, thrombocytopenia, pancytopenia [87]. Benzene causes also a certain type of leukemia [87,89]. Other effects caused by VOCs include eyes, nose, and throat irritation, headache, nausea, dizziness [87]. All types of gaseous pollutants could cause cancer [7,87].
- Dioxins affect the cardiovascular system, increasing mortality caused by ischemic heart disease; the nervous system, decreasing nerve conduction speed and impairing mental development of children; the digestive system, inducing cell damage, gastrointestinal and liver cancer; growth and development of the central nervous system of the fetus.
- Heavy metals influence the respiratory system, causing asthma, emphysema and lung cancer (arsenic, nickel, vanadium); the cardiovascular system, inducing tachycardia, increased blood pressure, anaemia (mercury, nickel, arsenic); the nervous system, causing memory disturbances, sleep disorders, anger, fatigue, hand tremors, blurred vision, slurred speech, and neurological cancer (arsenic, lead, mercury); the urinary system, inducing kidney damage, stone formation, nephrocalcinosis, and renal cancer. Lead exposure during pregnancy increases the risk of spontaneous abortion and reduced fetal growth, congenital malformations and lesions of developing nervous system.
- Particulate matter (especially, ultrafine and fine particle size modes) affects the respiratory system, inducing lung inflammation; the cardiovasculary system, leading to obstruction of blood vessels and myocardial infarction [7].
6.3. Impacts of Fog on Plants and Microorganisms
6.4. Impacts of Fog on Aviation and Public Transportation
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Meteorological Organization. International Meteorological Vocabulary; WMO Publication 182; World Meteorological Organization: Geneva, Switzerland, 1992; 782p. [Google Scholar]
- Croft, P.J. Fog. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Pyle, J.A., Curry, J.A., Eds.; Academic Press: London, UK, 2003; pp. 777–792. ISBN 978-0-12-227090-1. [Google Scholar]
- Fu, H.; Chen, J. Formation, features and controlling strategies of severe hazefog pollutions in China. Sci. Total Environ. 2017, 578, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, I.; Mildbrandt, J.A.; Zhou, B. Marine fog: A review on microphysics and visibility prediction. In Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences; Koracin, D., Dorman, C., Eds.; Springer: Cham, Switzerland, 2017; pp. 345–394. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Tanaka, H.; Honma, S.; Nishi, M.; Igarashi, T.; Teramoto, S.; Nishio, F.; Abe, S. Acid fog and hospital visits for asthma: An epidemiological study. Eur. Respir. J. 1998, 11, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle. Atmos. Environ. 2016, 133, 26–33. [Google Scholar] [CrossRef]
- Ritter, A.; Regalado, C.M.; Guerra, J.C. Quantification of fog water collection in three locations of Tenerife (Canary Islands). Water 2015, 7, 3306–3319. [Google Scholar] [CrossRef]
- Lehr, J.H.; Keeley, J. (Eds.) Water Encyclopedia: Oceanography; Meteorology; Physics and Chemistry; Water Law; and Water History, Art, and Culture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; p. 344. ISBN 978-0-471-73684-4. [Google Scholar]
- Stoycheva, A.; Guerova, G. Study of fog in Bulgaria by using the GNSS tropospheric products and large scale dynamic analysis. J. Atmos. Sol.-Terr. Phys. 2015, 133, 87–97. [Google Scholar] [CrossRef]
- Nanev, C. Theory of nucleation. In Handbook of Crystal Growth (Fundamentals: Thermodynamics and Kinetics), 2nd ed.; Nishinaga, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 315–358. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Haeffelin, M.; Laffineur, Q.; Bravo-Aranda, J.-A.; Drouin, M.-A.; Casquero-Vera, J.-A.; Dupont, J.-C.; De Backer, H. Radiation fog formation alerts using attenuated backscatter power from automatic lidars and ceilometers. Atmos. Meas. Tech. 2016, 9, 5347–5365. [Google Scholar] [CrossRef]
- Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.-M.; Birmili, W.; McMurry, P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 2004, 35, 143–176. [Google Scholar] [CrossRef]
- Curtius, J. Nucleation of atmospheric aerosol particles. Comptes Rendus Phys. 2006, 7, 1027–1045. [Google Scholar] [CrossRef]
- Kulmala, M.; Kerminen, V.-M. On the formation and growth of atmospheric nanoparticles. Atmos. Res. 2008, 90, 132–150. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.; Wang, W. Aerosol size distributions during haze episodes in winter in Jinan, China. Particuology 2016, 28, 77–85. [Google Scholar] [CrossRef]
- Noone, K.J.; Ogren, J.A.; Hallberg, A.; Heintzenberg, J.; Ström, J.; Hansson, H.C.; Svenningsson, B.; Wiedensohler, A.; Fuzzi, S.; Facchini, M.C.; et al. Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus 1992, 44B, 489–504. [Google Scholar] [CrossRef]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999; pp. 146–156, ISBN-13 978-0691001852, ISBN-10 0691001855. [Google Scholar]
- Brasseur, G.P.; Jacob, D.J. Modeling of Atmospheric Chemistry; Cambridge University Press: Cambridge, UK, 2017; p. 77, ISBN-13 9781107146969, ISBN-10 1107146968. [Google Scholar]
- Gillani, N.V.; Daum, P.H.; Schwartz, S.E.; Leaitch, W.R.; Strapp, J.W.; Isaac, G.A. Fractional activation of accumulation-mode particles in warm continental stratiform clouds. In Precipitation Scavenging and Atmosphere Surface Exchange Process; Schwartz, S.E., Slinn, W.G.N., Eds.; Hemisphere Publishing Corp., Taylor & Francis Group: Washington, DC, USA, 1992; Volume 1, pp. 345–358, ISBN-13 978-1560322634, ISBN-10 1560322632. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley Sons Inc.: Hoboken, NJ, USA, 2006; ISBN-13 978-0471720188, ISBN-10 0471720186. [Google Scholar]
- Wilson, W.E.; Suh, H.H. Fine particles and coarse particles: Concentration relationships relevant to epidemiologic studies. J. Air Waste Manag. 1997, 47, 1238–1249. [Google Scholar] [CrossRef]
- Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Herckes, P.; Valsaraj, K.T.; Collett, J.L., Jr. A review of observations of organic matter in fogs and clouds: Origin, processing and fate. Atmos. Res. 2013, 132–133, 434–449. [Google Scholar] [CrossRef]
- Gultepe, I.; Zhou, B.; Milbrandt, J.; Bott, A.; Li, Y.; Heymsfield, A.J.; Ferrier, B.; Ware, R.; Pavolonis, M.; Kuhn, T.; et al. A review on ice fog measurements and modeling. Atmos. Res. 2015, 151, 2–19. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; Sánchez-García-Casarrubios, J.; Jiménez-López, S. Ice surface entropy induction by humidity or how humidity prompts freezing. JMEST 2016, 3, 3825–3828. [Google Scholar]
- Zhou, Y.; Niu, S.; Lü, J.; Zhou, Y. The effect of freezing drizzle, sleet and snow on microphysical characteristics of supercooled fog during the icing process in a mountainous area. Atmosphere 2016, 7, 143. [Google Scholar] [CrossRef]
- Ali, G.; Khan, E.U.; Ali, N.; Khan, H.A.; Waheed, A. The effect of radioactive aerosols on fog formation. Pak. J. Meteorol. 2011, 7, 1–7. [Google Scholar]
- Masson, O.; Ott, A.V.; Bourcier, L.; Paulat, P.; Ribeiro, M.; Pichon, J.-M.; Sellegri, K.; Gurriaran, R. Change of radioactive cesium (137Cs and 134Cs) content in cloud water at an elevated site in France, before and after the Fukushima nuclear accident: Comparison with radioactivity in rainwater and in aerosol particles. Atmos. Res. 2015, 151, 45–51. [Google Scholar] [CrossRef]
- Bourcier, L.; Masson, O.; Laj, P.; Paulat, P.; Pichon, J.-M.; Chausse, P.; Gurriaran, R.; Sellegri, K. 7Be, 210Pb and 137Cs concentrations in cloud water. J. Environ. Radioact. 2014, 128, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Decesari, S.; Sowlat, M.H.; Hasheminassab, S.; Sandrini, S.; Gilardoni, S.; Facchini, M.C.; Fuzzi, S.; Sioutas, C. Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. Atmos. Chem. Phys. 2017, 17, 7721–7731. [Google Scholar] [CrossRef]
- Gibb, R.; Carson, P.; Thompson, W. The effect of fog on radionuclide deposition velocities. Proc. Annu. Conf. Can. Nucl. Assoc. 1997, 2, 1–14. [Google Scholar]
- Su, C.-C.; Huh, C.-A. Measurements of 7Be and 210Pb in cloudwaters: Toward a better understanding of aerosol transport and scavenging. Geophys. Res. Lett. 2006, 33, L04807. [Google Scholar] [CrossRef]
- Stolaki, S.; Haeffelin, M.; Lac, C.; Dupont, J.-C.; Elias, T.; Masson, V. Influence of aerosols on the life cycle of a radiation fog event. A numerical and observational study. Atmos. Res. 2015, 151, 146–161. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; García-Prada, J.C. The effect of the partial pressure of water vapor on the surface tension of the liquid water–air interface. J. Colloid Interface Sci. 2012, 381, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Portuguez, E.; Alzina, A.; Nichaud, P.; Oudjedi, M.; Smith, A. Evolution of a water pendant droplet: Effect of temperature and relative humidity. Nat. Sci. 2017, 9, 1–20. [Google Scholar] [CrossRef]
- Vargaftik, N.B.; Volkov, B.N.; Voljak, L.D. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 1983, 12, 817–820. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; García-Prada, J.C. Method for Modifying the Surface Tension in Liquid-Air Interfaces. ES Patent P201132074, 24 July 2013. [Google Scholar]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; Rodríguez-Celis, F. Surface freezing of water. SpringerPlus 2016, 5, 629. [Google Scholar] [CrossRef] [PubMed]
- Bendix, J.; Thies, B.; Cermak, J.; Nauß, T. Ground fog detection from space based on MODIS daytime data—A feasibility study. Weather Forecast 2005, 20, 989–1005. [Google Scholar] [CrossRef]
- Rudiger, J.J.; Book, K.; Baker, B.; deGrassie, J.S.; Hammel, S. A model for predicting fog aerosol size distributions. Proc. SPIE 2016, 9979, 99790V. [Google Scholar] [CrossRef]
- Tonttila, J.; Maalick, Z.; Raatikainen, T.; Kokkola, H.; Kühn, T.; Romakkaniemi, S. UCLALES-SALSA v1.0: A large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation. Geosci. Model Dev. 2017, 10, 169–188. [Google Scholar] [CrossRef]
- Lovett, G. Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos. Environ. 1984, 18, 361–371. [Google Scholar] [CrossRef]
- Klemm, O.; Wrzesinsky, T.; Scheer, C. Fog water flux at a canopy top: Direct measurement versus one-dimensional model. Atmos. Environ. 2005, 39, 5375–5386. [Google Scholar] [CrossRef]
- Müller, M.D.; Masbou, M.; Bott, A. Three-dimensional fog forecasting in complex terrain. Q. J. R. Meteorol. Soc. 2010, 136, 2189–2202. [Google Scholar] [CrossRef]
- Ballard, S.P.; Golding, B.W.; Smith, R.N.B. Mesoscale model experimental forecasts of the haar of northeast Scotland. Mon. Weather Rev. 1991, 119, 2107–2123. [Google Scholar] [CrossRef]
- Pagowski, M.; Gultepe, I.; King, P. Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteorol. 2004, 43, 3–16. [Google Scholar] [CrossRef]
- Shimadera, H.; Shrestha, K.L.; Kondo, A.; Kaga, A.; Inoue, Y. Fog simulation using a mesoscale model in and around the Yodo River Basin, Japan. J. Environ. Sci. 2008, 20, 838–845. [Google Scholar]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). In NCAR Technical Note NCAR/TN-398 + STR; National Center for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar]
- Stoelinga, M.T.; Warner, T.T. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteorol. 1999, 38, 385–404. [Google Scholar] [CrossRef]
- Gultepe, I.; Müller, M.D.; Boybeyi, Z. A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteorol. Clim. 2006, 45, 1469–1480. [Google Scholar] [CrossRef]
- Meyer, M.B.; Jiusto, J.E.; Lala, G.G. Measurement of visual range and radiation-fog (haze) microphysics. J. Atmos. Sci. 1980, 37, 622–629. [Google Scholar] [CrossRef]
- Gultepe, I.; Isaac, G. An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd. Q. J. R. Meteorol. Soc. 2004, 130, 2377–2390. [Google Scholar] [CrossRef]
- Jiusto, J.E. Fog structure. In Clouds, Their Formation, Optical Properties, and Effects; Hobbs, P.V., Deepak, A., Eds.; Academic Press: New York, NY, USA, 1981; pp. 187–239. [Google Scholar] [CrossRef]
- Bott, A.; Trautmann, T. PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res. 2002, 64, 191–203. [Google Scholar] [CrossRef]
- Müller, M.D.; Bott, A.; Masbou, M.; Janjic, Z. Fog prediction in a 3D Model with Parameterized Microphysics. In Proceedings of the World Weather Reasearch Programme Symposium on Nowcasting and Very Short Forecasting, Toulouse, France, 5–9 September 2005. [Google Scholar]
- Zhang, J.; Xue, H.; Deng, Z.; Ma, N.; Zhao, C.; Zhan, Q. A comparison of the parameterization schemes of fog visibility using the in-situ measurements in the North China Plain. Atmos. Environ. 2014, 92, 44–50. [Google Scholar] [CrossRef]
- Anthes, R.A.; Bernhardt, P.A.; Chen, Y.; Cucurull, L.; Dymond, K.F.; Ector, D.; Healy, S.B.; Ho, S.P.; Hunt, D.C.; Kuo, Y.H.; et al. The COSMIC/FORMOSAT-3 mission: Early results. Bull. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- Jin, S.G.; Li, Z.; Cho, J. Integrated water vapour field and multiscale variations over China from GPS measurements. J. Appl. Meteorol. Climatol. 2008, 47, 3008–3015. [Google Scholar] [CrossRef]
- Smith, T.L.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle. Mon. Weather Rev. 2007, 135, 2914–2930. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.-U.; Cho, J.; Baek, J.; Kim, H.W. A characteristic analysis of fog using GPS-derived integrated water vapour. Meteorol. Appl. 2010, 17, 463–473. [Google Scholar] [CrossRef]
- Abdullah, E.M.; Habib, F.; Mohamed-Slim, A. Outdoor FSO communications under fog: Attenuation modeling and performance evaluation. IEEE Photonics J. 2016, 8, 7905507. [Google Scholar] [CrossRef]
- Mehta, B.; Venkataraman, C.; Bhushan, M.; Tripathi, S.N. Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos. Environ. 2009, 43, 1288–1295. [Google Scholar] [CrossRef]
- Fowler, D.; Morse, A.P.; Gallagher, M.; Choularton, T. Measurements of cloud water deposition on vegetation using a lysimeter and a fluxgradient technique. Tellus 1990, 42, 285–293. [Google Scholar] [CrossRef]
- Mueller, S. Estimating cloud water deposition to subalpine spruce-fir forests I. Modifications to an existing model. Atmos. Environ. 1991, 25, 1093–1104. [Google Scholar] [CrossRef]
- Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R. Development of a land surface model including cloud water deposition on vegetation. J. Appl. Meteorol. Climatol. 2008, 47, 2129–2146. [Google Scholar] [CrossRef]
- Katata, G.; Nagai, H.; Kajino, M.; Ueda, H.; Hozumi, Y. Numerical study of fog deposition on vegetation for atmosphere-land interactionsin semi-arid and arid regions. Agric. For. Meteorol. 2010, 150, 340–353. [Google Scholar] [CrossRef]
- Katata, G.; Kajino, M.; Hiraki, T.; Aikawa, M.; Kobayashi, T.; Nagai, H. A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model. J. Geophys. Res. 2011, 116, D20102. [Google Scholar] [CrossRef]
- Chaouch, N.; Temimi, M.; Weston, M.; Ghedira, H. Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmos. Res. 2017, 187, 106–127. [Google Scholar] [CrossRef]
- Igawa, M.; Tsutsumi, Y.; Mori, T.; Okochi, H. Fog water chemistry at a mountainside forest and the estimation of the air pollutant deposition via fog droplets based on the atmospheric quality at the mountain base. Environ. Sci. Technol. 1998, 32, 1566–1572. [Google Scholar] [CrossRef]
- Dawson, T.E. Fog in the California redwood forest: Ecosystem inputs and use by plants. Oecologia 1998, 117, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Shimadera, H.; Kondo, A.; Kaga, A.; Shrestha, K.L.; Inoue, Y. Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan. Atmos. Environ. 2009, 43, 5894–5907. [Google Scholar] [CrossRef]
- Shimadera, H.; Kondo, A.; Kaga, A.; Shrestha, K.L.; Inoue, Y. Numerical predictions of sulfur and nitrogen depositions through fog in forest areas. J. Jpn. Soc. Atmos. Environ. 2010, 45, 247–255. [Google Scholar]
- Shimadera, H.; Kondo, A.; Shrestha, K.L.; Kaga, A.; Inoue, Y. Annual sulfur deposition through fog, wet and dry deposition in the Kinki Region of Japan. Atmos. Environ. 2011, 45, 6299–6308. [Google Scholar] [CrossRef]
- Jacobs, W.; Nietosvaara, V.; Bott, A.; Bendix, J.; Cermak, J.; Michaelides, S.; Gultepe, I. (Eds.) Short Range Forecasting Methods of Fog, Visibility and Low Clouds; ESSEM COST Action 722 Final Report; Office for Official Publications of the European Communities: Luxembourg, 2008. [Google Scholar]
- Tardif, R.; Rasmussen, R.M. Event-based climatology and typology of fog in the New York City region. J. Appl. Meteorol. Clim. 2007, 46, 1141–1168. [Google Scholar] [CrossRef]
- Wobrock, W.; Schell, D.; Maser, R.; Kessel, M.; Jaeschke, W.; Fuzzi, S.; Facchini, M.C.; Orsi, G.; Marzorati, A.; Winkler, P.; et al. Meteorological characteristics of the Po Valley fog. Tellus B 1992, 44, 469–488. [Google Scholar] [CrossRef]
- Roach, W. Back to basics: Fog: Part 2—The formation and dissipation of land fog. Weather 1995, 50, 7–11. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. Detecting ground fog from space—A microphysics-based approach. Int. J. Remote Sens. 2011, 32, 3345–3371. [Google Scholar] [CrossRef]
- Marchetti, M.; Boucher, V.; Dumoulin, J.; Colomb, M. Retrieving visibility distance in fog combining infrared thermography, Principal Components Analysis and Partial Least-Square regression. Infrared Phys. Technol. 2015, 71, 289–297. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A.; Frederick, J.E. Formation and effects of smog. In Environmental and Ecological Chemistry; Sabljic, A., Ed.; Eolss Publishers Co., Ltd.: Oxford, UK, 2009; Volume 2, pp. 25–51. ISBN 9781848266940. [Google Scholar]
- Zhang, Y.W.; Zhang, X.Y.; Zhang, Y.M.; Shen, X.J.; Sun, J.Y.; Ma, Q.L.; Yu, X.M.; Zhu, J.L.; Zhang, L.; Che, H.C. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution. Sci. Total Environ. 2015, 538, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wu, L. A new perspective on formation of haze-fog: The fuzzy cognitive map and its approaches to data mining. Sustainability 2017, 9, 352. [Google Scholar] [CrossRef]
- Sancini, A.; Tomei, F.; Tomei, G.; Caciari, T.; Di Giorgio, V.; André, J.-C.; Palermo, P.; Andreozzi, G.; Nardone, N.; Schifano, M.P.; et al. Urban pollution. G. Ital. Med. Lav. Erg. 2012, 34, 187–196. [Google Scholar]
- Hu, Y.; Lin, J.; Zhang, S.; Kong, L.; Fu, H.; Chen, J. Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere. Sci. Total Environ. 2015, 511, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Allaby, M. Fog, Smog and Poisoned Rain; Facts on File Inc.: New York, NY, USA, 2003; ISBN 10 0816047898. [Google Scholar]
- Li, H.; Wu, H.; Wang, Q.; Yang, M.; Li, F.; Sun, Y.; Qian, X.; Wang, J.; Wang, C. Chemical partitioning of fine particle-bound metals on haze-fog and non-haze-fog days in Nanjing, China and its contribution to human health risks. Atmos. Res. 2017, 183, 142–150. [Google Scholar] [CrossRef]
- Ganguly, N.D.; Tzanis, C. Study of stratosphere-troposphere exchange events of ozone in India and Greece using ozonesonde ascents. Meteorol. Appl. 2011, 18, 467–474. [Google Scholar] [CrossRef]
- Tzanis, C. Ground-based observations of ozone at Athens, Greece during the solar eclipse of 1999. Int. J. Remote Sens. 2005, 26, 3585–3596. [Google Scholar] [CrossRef]
- Le, G.E.; Breysse, P.N.; McDermott, A.; Eftim, S.E.; Geyh, A.; Berman, J.D.; Curriero, F.C. Canadian forest fires and the effects of long-range transboundary air pollution on hospitalizations among the elderly. ISPRS Int. J. Geo-Inf. 2014, 3, 713–731. [Google Scholar] [CrossRef]
- Miranda, A.I.; Monteiro, A.; Martins, V.; Carvalho, A.; Schaap, M.; Builtjes, P.; Borrego, C. Forest fires impact on air quality over Portugal. In Air Pollution Modeling and Its Application XIX; Borrego, C., Miranda, A.I., Eds.; NATO Science for Peace and Security Series Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2008; pp. 190–198. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X.H. Air pollution in megacities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- LaDochy, S. The disappearance of dense fog in Los Angeles: Another urban impact? Phys. Geogr. 2005, 26, 177–191. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z.; Li, C.; Lee, K.-H.; Wang, M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res. 2010, 115, D00K20. [Google Scholar] [CrossRef]
- Jacob, D.J.; Waldman, J.M.; Munger, J.W.; Hoffmann, M.R. A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets. Tellus B 1984, 36, 272–285. [Google Scholar] [CrossRef]
- Weiss-Penzias, P.S.; Ortiz, C., Jr.; Acosta, R.P.; Heim, W.; Ryan, J.P.; Fernandez, D.; Collett, J.L., Jr.; Flegal, A.R. Total and monomethyl mercury in fog water from the central California coast. Geophys. Res. Lett. 2012, 39, L03804. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.; Thun, M.; Calle, E.; Krewski, D.; Ito, K.; Thurston, G. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W.; Gao, J.; Bai, R.; Long, G.; Chu, C. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Hackney, J.D.; Linn, W.S.; Avol, E.L. Potential risks to human respiratory health from “Acid fog”: Evidence from experimental studies of volunteers. Environ. Health Perspect. 1985, 63, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Avol, E.L.; Linn, W.S.; Wightman, L.H.; Whynot, J.D.; Anderson, K.R.; Hackney, J.D. Short-term respiratory effects of sulfuric acid in fog: A laboratory study of healthy and asthmatic volunteers. JAPCA 1988, 38, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Lavorini, F.; Fontana, G.; Pantaleo, T.; Camiciottoli, G.; Castellani, W.; Maluccio, N.; Pistolesi, M. Fog-induced respiratory responses are attenuated by nedocromil sodium in humans. Am. J. Respir. Crit. Care 2001, 163, 1117–1120. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, J.; Herckes, P.; Ervens, B. N-nitrosodimethylamine (NDMA): A potent carcinogen in clouds and fogs. In Proceedings of the AAAR International Conference on Air Pollution and Health: Bridging the Gap from Sources to Heath Outcomes, San Diego, CA, USA, 22–26 March 2010. [Google Scholar]
- Hutchings, J.W.; Ervens, B.; Straub, D.; Herckes, P. N-nitrosodimethylamine occurrence, formation and cycling in clouds and fogs. Environ. Sci. Technol. 2010, 44, 8128–8133. [Google Scholar] [CrossRef] [PubMed]
- Pope III, C.A. Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am. J. Public Health 1989, 79, 623–628. [Google Scholar] [CrossRef]
- Percy, K.E.; Jensen, K.F.; McQuattie, C.J. Effects of ozone and acidic fog on red spruce needle epicuticular wax production, chemical composition, cuticular membrane ultrastructure and needle wettability. New Phytol. 1992, 122, 71–80. [Google Scholar] [CrossRef]
- Nara, C.; Dokiya, Y.; Usui, N.; Maruta, E.; Fa-Hua, L.; Sagi, T. Acid fog damage of beech at Hinokiboramaru-Tanzawa, Japan. J. Environ. Sci. Health A 2001, 36, 355–366. [Google Scholar] [CrossRef]
- Warren-Rhodes, K.A.; McKay, C.P.; Boyle, L.N.; Wing, M.R.; Kiekebusch, E.M.; Cowan, D.A.; Stomeo, F.; Pointing, S.B.; Kaseke, K.F.; Eckardt, F. et al. Physical ecology of hypolithic communities in the central Namib Desert: The role of fog, rain, rock habitat, and light. J. Geophys. Res. Biogeosci. 2013, 118, 1451–1460. [Google Scholar] [CrossRef]
- Forthun, G.M.; Johnson, M.B.; Schmitz, W.G.; Blume, J.; Caldwell, R.J. Trends in fog frequency and duration in the southeast United States. Phys. Geogr. 2006, 27, 206–222. [Google Scholar] [CrossRef]
- Bullough, J.D.; Rea, M.S. Impacts of fog characteristics, forward illumination, and warning beacon intensity distribution on roadway hazard visibility. Sci. World J. 2016, 2016, 4687816. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The fog remote sensing and modeling field project. Bull. Am. Meteorol. Soc. 2009, 90, 341–359. [Google Scholar] [CrossRef]
- Czyż, H.; Markowski, T. Acoustic method of airport fog precipitation. Aviation 2007, 11, 26–30. [Google Scholar]
- Koetse, M.J.; Rietveld, P. The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res. Part D 2009, 14, 205–221. [Google Scholar] [CrossRef]
System and Diseases | Pollutants |
---|---|
Respiratory system | NOx, SO2, O3, VOCs, microbes, heavy |
metals (As, Cd, Cr, Cu, Ni, Va, and Zn), PM2.5 and PM10 | |
Cardiovascular system | NO2, SO2, O3, CO, dioxins, |
heavy metals (As, Cd, Hg, and Ni), PM2.5 and PM10 | |
Hematological system | VOCs (benzene), heavy metals (Cd, Cu, Pb, and Zn) |
Urinary system | Heavy metals (As, Cd, Pb, Ni, and Zn) |
Nervous system | CO, VOCs, dioxins, heavy metals (As, Cu, Pb, and Hg) |
Digestive system | Dioxins, heavy metals (Zn) |
Muscular system | CO |
Reproductive system | Heavy metals (Cd, Pb, Ni, and Zn) |
Spontaneous abortion, fetal growth, | |
fetus central nervous system development, | Heavy metals (Pb), dioxins, NO2 |
children mental development and infant mortality | |
Bone diseases | Heavy metals (Cd and Ni) |
Skin diseases | Heavy metals (As, Cr, and Ni) |
Alzheimer and Parkinson diseases | Heavy metals (Zn) |
Genetic damages to the chromosomes, | VOCs (benzene), heavy metals (Rh, Pt, Pd) |
cyto-toxic, mutagenic | |
Cancer | NOx, SO2, O3, CO, VOCs, dioxins, heavy |
metals (As, Cd, Cr, Pb, Hg, Ni, Rh, Pt, Pd, Va, and Zn) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Díaz, J.L.; Ivanov, O.; Peshev, Z.; Álvarez-Valenzuela, M.A.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.V.; Vaseashta, A. Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. Water 2017, 9, 807. https://doi.org/10.3390/w9100807
Pérez-Díaz JL, Ivanov O, Peshev Z, Álvarez-Valenzuela MA, Valiente-Blanco I, Evgenieva T, Dreischuh T, Gueorguiev O, Todorov PV, Vaseashta A. Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. Water. 2017; 9(10):807. https://doi.org/10.3390/w9100807
Chicago/Turabian StylePérez-Díaz, José L., Ognyan Ivanov, Zahary Peshev, Marco A. Álvarez-Valenzuela, Ignacio Valiente-Blanco, Tsvetina Evgenieva, Tanja Dreischuh, Orlin Gueorguiev, Peter V. Todorov, and Ashok Vaseashta. 2017. "Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health" Water 9, no. 10: 807. https://doi.org/10.3390/w9100807