Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure
Abstract
:1. Introduction
2. Materials and Methods
2.1. MS2 QC Criteria Development
2.1.1. Ultrafiltration (UF)
2.1.2. Reference Matrix
2.1.3. Preliminary QC Criteria Analyses: Selection of Spiking Approach and Analytical Method
2.1.4. Spike Approach
2.1.5. Analytical Methods
2.1.6. QC Criteria Development for the Analytical Method (without UF) and the UF Procedure
2.1.7. Laboratory Selection and Analyses
2.1.8. Calculations and Statistical Analyses
2.2. Demonstration Exercise
2.2.1. Laboratory Selection
2.2.2. Analyses
3. Results
3.1. MS2 QC Criteria Development
3.1.1. Results of Preliminary QC Criteria Analyses: Selection of Spiking Approach and Analytical Method
3.1.2. Results of QC Criteria Development for the Analytical Method (without UF) and the UF Procedure
3.2. Demonstration Exercise MS2 Analyses
4. Discussion
4.1. Preliminary QC Criteria Analyses: Selection of Spiking Approach and Analytical Method
4.2. QC Criteria Development Analyses for the Analytical Method (without UF) and the UF Procedure
4.2.1. Matrix Effects with UF
4.2.2. Laboratory Proficiency
4.2.3. Warning Tool Criteria
4.2.4. Criteria Implementation
4.3. Demonstration Exercise
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASTM | American Society for Testing and Materials |
ATCC | American Type Culture Collection |
ATP | Alternate test procedure |
BSL | Biosafety level |
CDC | Centers for Disease Control and Prevention |
Ct | Cycle threshold |
DW | Drinking water |
EPA | U.S. Environmental Protection Agency |
ETV | Environmental Technology Verification Program |
IPR | Initial precision and recovery |
LOD | Limit of detection |
LRN | Laboratory Response Network |
MS | Matrix spike |
MS/MSD | Matrix spike/matrix spike duplicate |
MS2 | Male-specific |
NaPP | Sodium polyphosphate |
NSF | National Sanitation Foundation |
OPR | Ongoing precision and recovery |
PBS | Phosphate-buffered saline |
PFU | Plaque forming units |
QC | Quality control |
RNA | Ribonucleic acid |
RPD | Relative percent difference |
RSD | Relative standard deviation |
RT-PCR | Real-time reverse transcription polymerase chain reaction |
SAL | Single agar layer |
SM | Standard Methods |
SMI | Scientific Methods, Inc. |
UF | Ultrafiltration |
WHO | World Health Organization |
WLA | Water Laboratory Alliance |
WPP | Water processing procedure |
References
- Vinjé, J.; Oudejans, S.J.G.; Stewart, J.R.; Sobsey, M.D.; Long, S.C. Molecular detection and genotyping of male-specific coliphages by reverse transcription-PCR and reverse line blot hybridization. Appl. Environ. Microbiol. 2004, 70, 5996–6004. [Google Scholar] [CrossRef] [PubMed]
- Brion, G.M.; Meschke, J.S.; Sobsey, M.D. F-specific RNA coliphages: Occurrence, types, and survival in natural waters. Water Res. 2002, 36, 2419–2425. [Google Scholar] [CrossRef]
- Bae, J.; Schwab, K.J. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl. Environ. Microbiol. 2007, 74, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Adham, S.S.; Gagliardo, P.; Chambers, Y.; Gallagher, B.T.; Sobsey, M.; Trussell, R.R. Monitoring the Treatment of an Advanced Water Treatment System for Water Repurification Using Indigenous Coliphage, IWSA-Rapid Microbiological Reliability Monitoring Methods; IWSA Publisher: Arrington, UK, 1999. [Google Scholar]
- Gagliardo, P.; Chambers, Y.; Adham, S.S.; Sobsey, M.; Trussell, R.R. Using the Coliphage Naturally Present in Secondary Effluent to Monitor Performance of a Water Repurification Process in Removing Virus. In Proceedings of the IDA World Congress on Desalination and Water Reuse, San Diego, CA, USA, 29 August–3 September 1999.
- Tanner, B.D.; Kuwahara, S.; Gerba, C.P.; Reynolds, K.A. Evaluation of electrochemically generated ozone for the disinfection of water and wastewater. Water Sci. Technol. 2004, 50, 19–25. [Google Scholar] [PubMed]
- Nasser, A.M.; Paulman, H.; Sela, O.; Ktaitzer, T.; Cikurel, H.; Zuckerman, I.; Meir, A.; Aharoni, A.; Adin, A. UV disinfection of wastewater effluents for unrestricted irrigation. Water Sci. Technol. 2006, 54, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ishida, C.; Salveson, A.; Robinson, K.; Bowman, R.; Snyder, S. Ozone disinfection with the HiPOX™ Reactor: Streamlining an “old technology” for wastewater reuse. Water Sci. Technol. 2008, 58, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, N.; Matsushita, T.; Matsui, Y.; Urasaki, T.; Ohno, K. Comparison of behaviors of two surrogates for pathogenic waterborne viruses, bacteriophages Qβ and MS2, during the aluminum coagulation process. Water Res. 2009, 43, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.A.; Ahmad, D.; Kausley, S.B.; Balkunde, P.L.; Malhotra, C.P. A compact point-of-use water purification cartridge for household use in developing countries. J. Water Health. 2015, 13, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Purnell, S.; Ebdon, J.; Buck, A.; Tupper, M.; Taylor, H. Bacteriophage removal in a full-scale membrane bioreactor (MBR)-Implications for wastewater reuse. Water Res. 2015, 73, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Symonds, E.M.; Cook, M.M.; McQuaig, S.M.; Ulrich, R.M.; Schenck, R.O.; Lukasik, J.O.; Van Vleet, E.S.; Breitbart, M. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.S.; Layton, A.C.; Mailloux, B.J.; Culligan, P.J.; Williams, D.E.; Smartt, A.E.; Sayler, G.S.; Feighery, J.; McKay, L.; Knappett, P.S.K.; et al. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci. Total Environ. 2012, 431, 314–322. [Google Scholar] [CrossRef] [PubMed]
- National Sanitation Foundation. NSF P248-Emergency Military Operations Microbiological Water Purifiers; NSF International: Ann Arbor, MI, USA, 2008. [Google Scholar]
- National Sanitation Foundation. Environmental Technology Verification Protocol Drinking Water Systems Center Protocol for Equipment Verification Testing for Inactivation of Microbiological Contaminants; NSF International: Ann Arbor, MI, USA, 2003. [Google Scholar]
- World Health Organization. Evaluating Household Water Treatment Options: Health-Based Targets and Microbiological Performance Specifications; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Hill, V.R.; Polaczyk, A.L.; Hahn, D.; Narayanan, J.; Cromeans, T.L.; Roberts, J.M.; Amburgey, J.E. Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl. Environ. Microbiol. 2005, 71, 6878–6884. [Google Scholar] [CrossRef] [PubMed]
- Hill, V.R.; Kahler, A.M.; Jothikumar, N.; Johnson, T.B.; Hahn, D.; Cromeans, T.L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-L tap water samples. Appl. Environ. Microbiol. 2007, 73, 4218–6327. Available online: http://aem.asm.org/content/73/13/4218.full.pdf+html (accessed on 9 April 2016). [Google Scholar] [CrossRef] [PubMed]
- Polaczyk, A.L.; Narayanan, J.; Cromeans, T.L.; Hahn, D.; Roberts, J.M.; Amburgey, J.E.; Hill, V.R. Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. J. Microbiol. Methods 2008, 73, 92–99. Available online: http://www.sciencedirect.com/science/article/pii/S0167701208000456 (accessed on 9 April 2016). [Google Scholar] [CrossRef] [PubMed]
- Boudaud, N.; Machinal, C.; David, F.; Bourdonnec, A.F.; Jossent, J.; Bakanga, F.; Arnal, C.; Jaffrezic, M.P.; Oberti, S.; Gantzer, C. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Res. 2012, 46, 2651–2664. Available online: http://www.sciencedirect.com/science/article/pii/S0043135412001236 (accessed on 9 April 2016). [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Section: 9224 F. Membrane Filter Method. In Standard Methods for Water and Wastewater, 21st ed.; Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Eds.; APHA, AWWA, WEF: Washington, DC, USA, 2005; pp. 9-81–9-82. [Google Scholar]
- United States Environmental Protection Agency. EPA Method 1602: Male-Specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure; United States Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- United States Environmental Protection Agency. EPA Method 1600: Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus indoxyl-β-d-glucoside Agar (m-EI); United States Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- ASTM International. ASTM D2777-98: Standard Practice for Determination of Precision and Bias of Applicable Methods of Committee D-19 on Water; ASTM International: West Conshohocken, PA, USA, 1998. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Linear Statistical Models, 3rd ed.; Richard D. Irwin, Inc.: Burr Ridge, IL, USA, 1990; pp. 619–620. [Google Scholar]
- SAS Institute Inc. SAS Institute Inc. SAS/STAT User’s Guide. Volume 2, GLM-VARCOMP, Version 6, 4th ed.; SAS Institute: Cary, NC, USA, 1994. [Google Scholar]
- Hill, V.R.; Mull, B.; Jothikumar, N.; Ferdinand, K.; Vinje, J. Detection of GI and GII noroviruses in ground water using ultrafiltration and TaqMan real-time RT-PCR. Food Environ. Virol. 2010, 2, 218–224. [Google Scholar] [CrossRef]
Phase | n | Volume | Matrix | Spike 1 Level per Sample (PFU) 2 | Large Volume Processing | Analytical Method |
---|---|---|---|---|---|---|
1A | 3 | 100-mL | PBS | 100 PFU | NA | SM 9224 F 3 |
3 | 100-mL | DW 4 | 100 PFU | |||
1B | 3 | 40-L | PBS | 1000 PFU | UF, followed by filtering and analyzing 100 mL of retentate per sample | SM 9224 F 3 |
3 | 100-L | DW 4 | 1000 PFU | |||
2 | 3 | 100-mL | PBS | 100 PFU | NA | Method 1602 5 |
3 | 100-mL | DW 4 | 100 PFU | |||
3 | 100-mL | PBS | 100 PFU | NA | Method 1602 5, using EasyPhage | |
3 | 100-mL | DW 4 | 100 PFU | |||
3 | 40-L | PBS | 1000 PFU | UF, followed by analyzing 100 mL of retentate per sample | Method 1602 5 | |
3 | 100-L | DW 4 | 1000 PFU | |||
3 | 40-L | PBS | 1000 PFU | UF, followed by analyzing 100 mL of retentate per sample | Method 1602 5, using EasyPhage | |
3 | 100-L | DW 4 | 1000 PFU |
Lab | 100-mL PBS Samples (n = 4) | 40-L PBS Samples (n = 4) 2 | ||||||
---|---|---|---|---|---|---|---|---|
Mean Recovery (%) | SD 3 (%) | RSD 4 (%) | Range of Recoveries (%) | Mean Recovery (%) | SD 3 (%) | RSD 4 (%) | Range of Recoveries (%) | |
1 | 47.1 | 9.19 | 19.5 | 35.6–56.2 | 36.9 | 7.47 | 20.3 | 27.4–44.5 |
2 | 49.1 | 2.78 | 5.66 | 45.3–52.0 | 53.1 | 8.92 | 16.8 | 43.1–64.4 |
3 5 | 59.5 | 15.0 | 25.2 | 47.2–80.3 | - | - | - | - |
4 | 78.3 | 2.97 | 3.79 | 74.4–81.0 | 37.4 | 6.79 | 18.2 | 31.2–46.5 |
5 | 45.4 | 3.99 | 8.78 | 39.7–48.8 | 37.9 | 3.09 | 8.14 | 35.5–42.5 |
6 | 96.3 | 7.09 | 7.37 | 87.6–102 | 38.7 | 5.66 | 14.6 | 32.2–45.1 |
7 6 | 44.1 | 11.5 | 26.0 | 34.7–60.3 | 55.5 | 3.51 | 6.33 | 53.1–58.0 |
8 | 54.8 | 5.92 | 10.8 | 48.4–60.3 | 37.2 | 2.42 | 6.50 | 35.5–38.9 |
9 | 96.1 | 18.3 | 19.0 | 84.3–123 | 28.5 | 10.5 | 36.7 | 22.7–44.1 |
10 7 | - | - | - | - | - | - | - | - |
11 | 51.5 | 4.12 | 8.00 | 48.2–56.7 | 43.0 | 6.33 | 14.7 | 35.2–50.5 |
12 | 102 | 8.15 | 8.02 | 92.5–111 | 48.3 | 5.13 | 10.6 | 41.4–53.6 |
13 | 52.5 | 7.28 | 13.9 | 46.3–62.8 | 26.2 | 8.51 | 32.5 | 17.9–34.9 |
Overall | 64.7 | 9.25 8 | 14.9 9 | 34.7–123 | 40.0 | 6.97 8 | 19.9 9 | 17.9–64.4 |
Lab | 100-mL DW Samples (n = 4) | 100-L DW Samples (n = 4) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean Recovery (%) | SD 2 (%) | RSD 3 (%) | Range of Recoveries (%) | Mean Recovery (%) | SD 2 (%) | RSD 3 (%) | Range of Recoveries (%) | ||
1 | 45.4 | 4.87 | 10.7 | 41.2–52.5 | 9.52 | 3.69 | 38.8 | 6.63–14.9 | |
2 | 27.6 | 4.32 | 15.6 | 21.7–32.1 | 5.64 | 2.68 | 47.5 | 2.42–8.90 | |
3 | 58.3 | 12.2 | 20.9 | 47.2–74.6 | 45.3 | 6.09 | 13.4 | 39.9–54.0 | |
4 | 77.3 | 12.4 | 16.0 | 71.1–95.9 | 33.1 | 13.9 | 41.9 | 16.3–46.4 | |
5 | 50.4 | 6.00 | 11.9 | 43.0–57.0 | 32.0 | 10.7 | 33.3 | 21.0–44.4 | |
6 | 95.2 | 10.8 | 11.3 | 85.9–110 | 49.8 | 6.83 | 13.7 | 46.2–60.0 | |
7 4 | 58.2 | 8.48 | 14.6 | 51.1–70.3 | 41.2 | 3.66 | 8.89 | 38.6–43.8 | |
8 | 55.3 | 11.5 | 20.8 | 39.3–66.7 | 41.5 | 7.62 | 18.4 | 34.6–51.5 | |
9 5 | 134 | 6.80 | 5.09 | 125–140 | 31.9 | 10.1 | 31.8 | 24.7–39.0 | |
10 6 | - | - | - | - | - | - | - | - | |
11 | 54.5 | 3.73 | 6.84 | 49.1–57.6 | 38.2 | 3.92 | 10.3 | 33.0–41.4 | |
12 | 106 | 7.28 | 6.86 | 100–116 | 17.1 | 19.5 | 114 | 0.00–34.8 | |
13 | 46.5 | 3.66 | 7.87 | 43.0–50.4 | 28.0 | 15.5 | 55.5 | 16.6–49.8 | |
Overall | 67.4 | 8.31 7 | 13.4 8 | 21.7–140 | 30.6 | 10.4 7 | 47.3 8 | 0.00–60.0 |
Performance Test | Analytical Method | LRN UF Procedure |
---|---|---|
Acceptance Criteria | Acceptance Criteria | |
PBS Samples | 100-mL PBS Samples | 40-L PBS Samples |
IPR (4 PBS samples) Mean Percent Recovery | 18%–105% | 21%–100% |
IPR (4 PBS Samples) Precision 1 | 26% | 32% |
OPR 2 (1 PBS sample) | 16%–107% | 18%–100% |
DW Samples | 100-mL DW Samples | 100-L DW Samples |
MS 3 (1 DW sample) Mean Percent Recovery | 16%–114% | 2%–100% |
MS/MSD 4 (2 DW samples) Precision | 39% | 95% |
Concentration | Mean Ct | Range of Ct Values |
---|---|---|
Undiluted | 25 | 21–32 |
1:10 | 28 | 25–35 |
1:100 | 31 | 28–38 |
1:1000 | 35 | 31–44 |
Concentration | Mean Ct | Range of Ct Values |
---|---|---|
Undiluted | 31 | 25–41 |
1:4 | 30 | 27–40 |
1:10 | 31 | 28–35 |
Performance Test | Analytical Method | LRN UF Procedure |
---|---|---|
Acceptance Criteria | Acceptance Criteria | |
PBS Samples | 100-mL PBS Samples | 40-L PBS Samples |
IPR (4 PBS samples) Mean Percent Recovery | 26%–100% | 25%–100% |
IPR (4 PBS samples) Precision 1 | 23% | 28% |
OPR 2 (1 PBS sample) | 24%–100% | 21%–100% |
DW Samples | 100-mL DW Samples | 100-L DW Samples |
MS 3 (1 DW sample) Mean Percent Recovery | 25%–105% | 7%–100% |
MS/MSD 4 (2 DW samples) Precision | 33% | 79% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapp, L.; Chambers, Y.; Takundwa, P.; Hill, V.R.; Schneeberger, C.; Knee, J.; Raynor, M.; Klonicki, P.; Miller, K.; Pope, M.; et al. Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure. Water 2016, 8, 248. https://doi.org/10.3390/w8060248
Mapp L, Chambers Y, Takundwa P, Hill VR, Schneeberger C, Knee J, Raynor M, Klonicki P, Miller K, Pope M, et al. Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure. Water. 2016; 8(6):248. https://doi.org/10.3390/w8060248
Chicago/Turabian StyleMapp, Latisha, Yildiz Chambers, Prisca Takundwa, Vincent R. Hill, Chandra Schneeberger, Jackie Knee, Malik Raynor, Patricia Klonicki, Kenneth Miller, Misty Pope, and et al. 2016. "Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure" Water 8, no. 6: 248. https://doi.org/10.3390/w8060248
APA StyleMapp, L., Chambers, Y., Takundwa, P., Hill, V. R., Schneeberger, C., Knee, J., Raynor, M., Klonicki, P., Miller, K., Pope, M., & Hwang, N. (2016). Inter-Laboratory Evaluation and Successful Implementation of MS2 Coliphage as a Surrogate to Establish Proficiency Using a BSL-3 Procedure. Water, 8(6), 248. https://doi.org/10.3390/w8060248