Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Rainfall-Runoff Model
2.4. Model Calibration and Validation
2.5. Model Performance Criteria
3. Results and Discussion
3.1. HMS Calibration and Validation
3.2. The Effects of Land-Use Changes on Discharge and Peak Flow
3.3. Generation of Outflow
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ng, S. Governance beyond the government: Responding to a reactionary flood governance regime in Ayutthaya, Thailand. Habitat Int. 2016, 52, 11–19. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and assessment of hydrological changes in a developing 674 urban catchment. Hydrol. Process. 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Sagala, S.; Lassa, J.; Yasaditama, H.; Hudalah, D. The Evolution of Risk and Vulnerability in Greater Jakarta: Contesting Government Policy in Dealing with a Megacity’s Exposure to Flooding. Available online: http://www.irgsc.org/pubs/wp/wp02.html (accessed on 21 November 2016).
- Ali, M.; Hadi, S.; Sulistyantara, B. Study on land cover change of Ciliwung downstream watershed with spatial dynamic approach. Procedia-Soc. Behav. Sci. 2016, 227, 52–59. [Google Scholar] [CrossRef]
- Hollis, G.E. The effect of urbanization on floods of different recurrence interval. Water Resour. Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Meierdiercks, K.L.; Nelson, P.A.; Miller, A.J.; Holland, E.J. Field studies of the storm event hydrologic response in an urbanizing watershed. Water Resour. Res. 2005, 41, W10413. [Google Scholar] [CrossRef]
- Dougherty, M.; Dymond, R.L.; Grizzard, T.J., Jr.; Godrej, A.N.; Zipper, C.E.; Randolph, J. Quantifying long term hydrologic response in an urbanizing basin. J. Hydrol. Eng. 2006, 12, 33–41. [Google Scholar] [CrossRef]
- Ogden, F.L.; Pradhan, N.R.; Downer, C.W.; Zahner, J.A. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 2011, 47, W12503. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.-Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464–465, 127–139. [Google Scholar] [CrossRef]
- Li, Y.K.; Wang, C.Z. Impacts of urbanization on surface runoff of the Dardenne Creek watershed, ST. Charles county, Missouri. Phys. Geogr. 2009, 30, 556–573. [Google Scholar] [CrossRef]
- Emam, A.R.; Kappas, M.; Hosseini, S.Z. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrol. Res. 2015, 46, 854–870. [Google Scholar] [CrossRef]
- Im, S.J.; Kim, H.; Kim, C.; Jang, C. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environ. Geol. 2009, 57, 231–239. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis Exit EPA Disclaimer. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mahmood, R.; Jia, S.; Babel, M.S. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan. Water 2016, 8, 23. [Google Scholar] [CrossRef]
- Shrestha, M.; Koike, T.; Hirabayashi, Y.; Xue, Y.; Wang, L.; Rasul, G.; Ahmad, B. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. J. Geophys. Res. Atmos. 2015, 120, 4889–4949. [Google Scholar] [CrossRef]
- Poerbandono; Julian, M.M.; Ward, P.J. Assessment of the effects of climate and land cover changes on river discharge and sediment yield, and an adaptive spatial planning in the Jakarta region. Nat. Hazards 2014, 73, 507–530. [Google Scholar] [CrossRef]
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Muis, S.; Güneral, B.; Jongman, B.; Aerts, J.C.J.H.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef] [Green Version]
- Remondi, F.; Burlando, P.; Vollmer, D. Exploring the hydrological impact of increasing urbanization on a tropical river catchment of the metropolitan Jakarta, Indonesia. Sustain. Cities Soc. 2016, 20, 210–221. [Google Scholar] [CrossRef]
- Center for Region Cimanuk-Cisanggarung River Basin (BBWSCC). Water Resources Management Pattern Ciliwung-Cisadane; Ministry of Public Works and Public Housing of Indonesia: Jakarta, Indonesia, 2012. [Google Scholar]
- Mishra, B.; Herath, S. Assessment of Future Floods in the Bagmati River Basin of Nepal Using Bias-Corrected Daily GCM Precipitation Data. J. Hydrol. Eng. 2015, 20, 05014027. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Mishra, B.; Herath, S. Climate projections downscaling and impact assessment on precipitation over upper Bagmati River Basin, Nepal. In Proceedings of the Third International Conference on Addressing Climate Change for Sustainable Development through Up-Scaling Renewable Energy Technologies, Kathmandu, Nepal, 12–14 October 2011; Institute of Engineering, Tribhuvan University: Kathmandu, Nepal, 2011; pp. 275–281. [Google Scholar]
- Feldman, A.D. Hydrologic Modeling System HEC-HMS, Technical Reference Manual; U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC): Davis, CA, USA, 2011. [Google Scholar]
- U.S. Army Corps of Engineers. Hydrologic Modeling System (HEC-HMS) Application Guide: Version 3.1.0; Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2008. [Google Scholar]
- Gumindoga, W.; Rwasoka, D.T.; Nhapi, I.; Dube, T. Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Applications of the HEC-HMS model. Phys. Chem. Earth 2016. [Google Scholar] [CrossRef]
- Singh, V.P. Elementary Hydrology; Prentice Hall of India: New Delhi, India, 1994. [Google Scholar]
- Muthukrishnan, S.; Harbor, J.; Lim, K.J.; Bernard, A.E. Calibration of a simple rainfall-runoff model for long-term hydrological impact evaluation. Urban Reg. Inf. Syst. Assoc. (URISA) J. 2006, 18, 35–42. [Google Scholar]
- Zhu, Z.; Chen, Z.; Chen, X.; He, P. Approach for evaluating inundation risks in urban drainage systems. Sci. Total Environ. 2016, 553, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Hydrologic Modeling System (HEC-HMS) Technical Reference Manual; Institute for Water Resources, Hydrologic Engineering Center: Davis, CA, USA, 2000. [Google Scholar]
- Kamali, B.; Mousavi, S.J.; Abbaspour, K.C. Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrol. Process. 2013, 27, 4028–4042. [Google Scholar] [CrossRef]
- Asadi, A. The Comparison of Lumped and Distributed Models for Estimating Flood Hydrograph (Study Area: Kabkian Basin) BY HMS. J. Electron. Commun. Eng. Res. 2013, 1, 7–13. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Im, S.; Brannan, K.M.; Mostaghimi, S. Simulating hydrologic and water quality impacts in an urbanizing watershed. J. Am. Water Resour. Assoc. 2003, 39, 1465–1479. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Markus, M. Impacts of urbanization and climate variability on floods in Northeastern Illinois. J. Hydrol. Eng. 2009, 14, 606–616. [Google Scholar] [CrossRef]
- Harto, A.B.; Kondoh, A.; Sakura, Y. The effect of land use changes on the water balance in the Ciliwung-Cisadane catchment, West java, Indonesia. In Proceedings of the International Symposium on Hydrology Water Resources and Management in Southeast Asia and the Pacific, Taegu, Korea, 10–13 November 1998.
Number | Data | Period |
---|---|---|
1 | River discharge | 1–7 February 2007, 1–12 January 1996 |
2 | Rainfall | 1–7 February 2007, 1–12 January 1996 |
Parameters | Sub-Basin/Reach | Lower Bound | Upper Bound |
---|---|---|---|
CN | 5-sub-basins | 35 | 70 |
Lag time (min) | 5-sub-basins | 50 | 350 |
N-stream | 3-streams | 0.01 | 0.06 |
Class | LU-2009 (km2) | LU-2030 (km2) | Change % |
---|---|---|---|
Urban | 21.37 | 31.76 | 48.6 |
Agriculture | 35.71 | 60.44 | 69.3 |
Forest | 80.07 | 44.95 | −43.9 |
Water | 0.48 | 0.48 | 0.0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafiei Emam, A.; Mishra, B.K.; Kumar, P.; Masago, Y.; Fukushi, K. Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia. Water 2016, 8, 559. https://doi.org/10.3390/w8120559
Rafiei Emam A, Mishra BK, Kumar P, Masago Y, Fukushi K. Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia. Water. 2016; 8(12):559. https://doi.org/10.3390/w8120559
Chicago/Turabian StyleRafiei Emam, Ammar, Binaya Kumar Mishra, Pankaj Kumar, Yoshifumi Masago, and Kensuke Fukushi. 2016. "Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia" Water 8, no. 12: 559. https://doi.org/10.3390/w8120559