Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. SWAT Hydrological Model
3.2. RIEMS RCM
3.3. Coupling Method
3.4. Scale Transformation
3.5. Calibration and Validation
3.6. Statistical Evaluation Criteria
4. Results
4.1. RIEMS Evaluation
4.2. Watershed Delineation
4.3. Sensitivity Analysis and Calibration
4.4. Simulation Results and Applicability Assessment
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deng, X.Z.; Shi, Q.L.; Zhang, Q.; Shi, C.C.; Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. Earth A/B/C 2015, 79–82, 2–10. [Google Scholar] [CrossRef]
- Deng, X.Z.; Singh, R.B.; Liu, J.G.; Güneralp, B. Water use efficiency and integrated water resource management for river basin. Phys. Chem. Earth 2015, 89, 1–2. [Google Scholar] [CrossRef]
- Kang, E.S.; Cheng, G.D.; Lan, Y.C.; Jin, H.J. A model for simulating the response of runoff from the mountainous watershed of inland river basins in the arid area of northwest China to climatic changes. Sci. China Ser. D 1999, 42, 52–63. [Google Scholar] [CrossRef]
- Yu, M.Y.; Chen, X.; Li, L.H.; Bao, A.M.; Paix, M.J. Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges. Water Resour. Manag. 2011, 25, 2669–2681. [Google Scholar] [CrossRef]
- Lu, Z.X.; Zou, S.B.; Xiao, H.L.; Zheng, C.M.; Yin, Z.L.; Wang, W.H. Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Phys. Chem. Earth A/B/C 2015, 79–82, 76–85. [Google Scholar] [CrossRef]
- Chen, J.F.; Zhang, W.C.; Gao, J.F.; Cao, K. Assimilating multi-site measurements for semi-distributed hydrological model updating. Quat. Int. 2012, 282, 122–129. [Google Scholar] [CrossRef]
- Shie, Y.L.; Raghavan, S.V.; Vu, M.T. Climate Change and Its Impacts on Streamflow: WRF and SCE-Optimized SWAT Models. Data Assim. Atmos. Ocean. Hydrol. Appl. 2013, 2, 411–428. [Google Scholar]
- Oyerinde, G.T.; Hountondji, F.C.; Wisser, D.; Diekkruger, B.; Lawin, A.E.; Odofin, A.J.; Afouda, A. Hydro-climatic changes in the Niger basin and consistency of local perceptions. Reg. Environ. Chang. 2015, 15, 1627–1637. [Google Scholar] [CrossRef]
- Huang, L.; Xu, X.L.; Zhai, J.; Sun, C.Y. Local background climate determining the dynamics of plateau lakes in China. Reg. Environ. Chang. 2016, 1–14. [Google Scholar] [CrossRef]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy precipitation events over the Euro-Mediterranean region Heavy precipitation events over the Euro-Mediterranean region. Reg. Environ. Chang. 2016, 16, 595–602. [Google Scholar] [CrossRef]
- Lakhtakia, M.N.; Yarnal, B.; Johnson, D.L.; White, R.A.; Miller, D.A.; Yu, Z. A simulation of river-basin response to mesoscale meteorological forcing: The Subsequenhanna River Basin Experiment (SRBEX). JAWRA 1998, 43, 921–937. [Google Scholar] [CrossRef]
- Evans, J.P. Improving the characteristics of stream flow modeled by regional climate models. J. Hydrol. 2003, 284, 211–227. [Google Scholar] [CrossRef]
- Christensen, N.S.; Lettenmaier, D.P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin Hydrol. Earth Syst. Sci. 2007, 11, 1417–1434. [Google Scholar] [CrossRef]
- Wang, N.L.; Zhang, S.B.; He, J.Q.; Pu, J.C.; Xu, X.B.; Jiang, X. Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique. Chin. Sci. Bull. 2009, 54, 2751–2757. [Google Scholar] [CrossRef]
- Pan, X.D.; Li, X. Validation of WRF model on simulating forcing data for Heihe River Basin. Sci. Cold Arid Reg. 2011, 3, 344–357. [Google Scholar]
- Zhao, L.J.; Yin, L.; Xiao, H.L.; Cheng, G.D.; Zhou, M.X.; Yang, Y.G.; Li, Z.C.; Zhou, J. Isotopic evidence for the moisture origin and composition of surface runoff in the headwater of the Heihe River basin. Chin. Sci. Bull. 2011, 56, 58–67. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, Z.X.; Li, Z.J. Performance of WASMOD and SWAT on hydrological simulation in Yingluoxia watershed in nourthwest of China. Hydrol. Process. 2011, 25, 2001–2008. [Google Scholar] [CrossRef]
- Li, Z.L.; Shao, Q.X.; Xu, Z.X.; Cai, X.T. Analysis of parameter uncertainty in semidistributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China. J. Hydrol. 2010, 385, 76–83. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, Z.X.; Shao, Q.X.; Yang, J. Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol. Process. 2009, 23, 2744–2753. [Google Scholar] [CrossRef]
- Giorgi, F. Simulations of regional climate using a limited area model nested in a general circulation model. J. Clim. 1990, 3, 941–963. [Google Scholar] [CrossRef]
- Deng, X.Z.; Singh, R.B.; Liu, J.G.; Güneralp, B. Physical and economic processes of water scarcity and water allocation for integrated river basin management. Phys. Chem. Earth A/B/C 2015, 79. [Google Scholar] [CrossRef]
- Huang, J.; Dool, H.M.; Georgakakos, K.P. Analysis of model-calculated soil moisture over the United States (1931–1993) and application to long-range temperature forecasts. J. Clim. 1996, 9, 1350–1362. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment: Part I. Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Xu, Z.M.; Nan, Z.T. Study on ecological compensation in upper stream of Heihe River Basin based on SWAT model and minimum-data approach. Trans. Chin. Soc. Agric. Eng. 2012, 28, 124–130. [Google Scholar]
- Shi, P.; Ma, X.X.; Hou, Y.B.; Li, Q.F.; Zhang, Z.C.; Qu, S.M.; Chen, C.; Cai, T.; Fang, X.Q. Effects of land-use and climate change on hydrological processes in the upstream of Huai River, China. Water Resour. Manag. 2013, 27, 1263–1278. [Google Scholar] [CrossRef]
- Glavan, M.; Ceglar, A.; Pintar, M. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment–lesson for policy and decision makers. Hydrol. Process. 2015, 29, 3124–3144. [Google Scholar] [CrossRef]
- Tokar, A.S.; Markus, M. Precipitation-runoff modeling using artificial neural networks and conceptual models. ASCE J. Hydrol. Eng. 2000, 5, 156–161. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Stein, A.; Tabari, H.; Abghari, H.; Jalalkamali, N.; Hosseinipour, E.Z.; Singh, V.P. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. Int. J. Environ. Sci. Technol. 2013, 10, 1181–1192. [Google Scholar] [CrossRef]
- Makwana, J.J.; Tiwari, M.K. Intermittent streamflow forecasting and extreme event modelling using wavelet based artificial neural networks. Water Resour. Manag. 2014, 28, 4857–4873. [Google Scholar] [CrossRef]
- Navideh, N.; Latif, K. Coupling SWAT and ANN models for enhanced daily streamflow prediction. J. Hydrol. 2016, 533, 141–151. [Google Scholar]
- Xiong, Z.; Wang, S.Y.; Zeng, Z.M.; Fu, C.B. Analysis of simulated heavy rain over the Yangtze River Valley During 11–30 June 1998 using RIEMS. Adv. Atmos. Sci. 2003, 20, 815–824. [Google Scholar]
- Zhang, J.Y.; Dong, W.J.; Fu, C.B.; Wu, L.Y.; Xiong, Z.; Ma, J.; Zhang, K.J. Streamflow simulation for the yellow river basin using RIEMS and LRM. Adv. Atmos. Sci. 2003, 20, 415–424. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Chen, X.; Zhang, Y.; Zhang, W.C.; Fu, C.B.; Niu, G.Y. Development of a large-scale hydrological model TOPX and its coupling with regional integrated environment modeling system RIEMS. Chin. J. Geophys. 2009, 52, 1954–1965. [Google Scholar] [CrossRef]
- Zang, C.F.; Liu, J.G. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. J. Hydrol. 2013, 502, 27–36. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.Y.; Wang, Z.; Zhang, Q. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Phys. Chem. Earth 2015, 79, 11–19. [Google Scholar] [CrossRef]
- Yin, Z.L.; Xiao, H.L.; Zou, S.B.; Zhu, R.; Lan, Y.C.; Shen, Y.P. Simulation of hydrological process of mountainous watersheds in inland river basin: Taking the Heihe Mainstream River as an example. J. Arid Land 2014, 6, 16–26. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil and Water Assessment Tool Theoretical Documentation, version 2009; Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2011. [Google Scholar]
- Fu, C.B.; Yuan, H.L. A virtual numerical experiment to understand the impacts of recovering natural vegetation on the summer climate and environmental conditions in East Asia. Chin. Sci. Bull. 2001, 46, 1199–1203. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR. Available online: http://opensky.ucar.edu/islandora/object/technotes:170 (accessed on 13 October 2016).
- Fritsch, J.M.; Chappell, C.F. Numberical prediction of convectively driven mesoscale pressure system. Part I: Convective parameterization. J. Atmos. Sci. 1980, 37, 1722–1733. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Henderson, S.A.; Kennedy, P.J. Biosphere-Atmosphere Transfer Scheme (BATS) Version as Coupled to the NCAR Community Climate Model. NCAR Technical Report NCAR/TN-387+STR. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A154 (accessed on 13 October 2016).
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Briegleb, B.P.; Williamson, D.L.; Rasch, P.J. Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A187 (accessed on 13 October 2016).
- Xiong, Z. Simulated forcing dataset of 3 km/6 hour in 1980–2010 in Heihe River Basin. Heihe Plan Sci. Data Center 2014. [Google Scholar] [CrossRef]
- Molders, N.; Raabe, A. Testing the effect of a two-way-coupling of meteorological and a hydrologic model on the predicted local weather. Atmos. Res. 1997, 45, 81–107. [Google Scholar] [CrossRef]
- Goodall, J.L.; Saint, K.D.; Ercan, M.B.; Briely, L.J.; Murpy, S.; You, H.H.; Deluca, C.; Rood, R.B. Coupling climate and hydrological models: Interoperability through Web Services. Environ. Model. Softw. 2013, 46, 250–259. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, J. Evaluating the use of “Goodness-of-Fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Houghton, J.T. In The solar cycle and terrestrial climate, solar and space weather. IPCC Rep. 2001, 463, 255–259. [Google Scholar]
- Xiong, Z.; Yan, X.D. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region. Chin. Sci. Bull. 2013, 58, 4670–4678. [Google Scholar] [CrossRef]
- Xu, B.R.; Lu, Z.X.; Liu, S.Y.; Li, J.; Xie, J.L.; Long, A.H.; Yin, Z.L.; Zou, S.B. Glacier changes and their impacts on the discharge in the past half-century in Tekes watershed, Central Asia. Phys. Chem. Earth A/B/C 2015, 89, 96–103. [Google Scholar] [CrossRef]
- Lu, Z.X.; Zou, S.B.; Xiao, H.L.; Yin, Z.L.; Ruan, H.W.; Gao, H.S. How to determine drainage area threshold in alpine regions of upper reaches of Heihe River. J. Glaciol. Geocryol. 2015, 37, 493–499. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; King, K.; Williams, J. Soil and Water Assessment Tool (SWAT) Theoretical Documentation; BRC Report 02-05; Blackland Research Center, Texas Agricultural Experiment Station: Temple, TX, USA, 2005. [Google Scholar]
- Xu, B.R.; Zou, S.B.; Liu, Y.; Lu, Z.X.; Xiao, H.L. Terrain representation for the precipitation stations in Heihe River Basin based on GIS. J. Lanzhou Univ. (Nat. Sci.) 2015, 51, 166–172. [Google Scholar]
- Yang, C.G.; Lin, C.H.; Hao, Z.C.; Yu, Z.B.; Liu, S.F. Review of Coupling Atmospheric and Hydrological Models. Adv. Earth Sci. 2007, 22, 800–817. [Google Scholar]
Code | Soil | Description | Code | Soil | Description |
---|---|---|---|---|---|
23111121 | GRCS | Grey cinnamon soils | 23117104 | MEMS | Meadow marsh soils |
23111123 | LGCS | Leaching grey cinnamon soils | 23117111 | LMPS | Low moor peat soils |
23112101 | CHER | Chernozem | 23120102 | ALMS | Alpine meadow soils |
23112112 | CHES | Chestnut soils | 23120104 | BAMS | Brown alpine meadow soils |
23112113 | LICS | Light chestnut soils | 23120112 | DAFS | Dark felty soils |
23113113 | MESI | Meadow sierozem | 23120113 | TDFS | Thin dark felty soils |
23115181 | CHIS | Chisley soils | 23120114 | BDFS | Brown dark felty soils |
23115184 | CALI | Calcium lithosol | 23120122 | FRCS | Frigid calcic soils |
23116102 | LIMS | Limy meadow soils | 23120132 | COCS | Cold calcic soils |
23117101 | BOGS | Bog soils | 23120133 | DCCS | Dark cold calcic soils |
23117102 | SAMS | Sapropel mire soils | 23120171 | FRFS | Frigid frozen soils |
23117103 | PEMS | Peat mire soils | 23127101 | SNOW | Glacier snow |
Code | Land Cover | Description | Code | Land Cover | Description |
---|---|---|---|---|---|
14 | PICR | Picea crassifolia | 415a | STPS | Stipa purpurea steppe |
197 | HIRS | Hippophae rhamnoides scrubland | 497 | LWAM | Little wormwood alpine meadow |
239 | SAGS | Salix gilashanica scrubland | 498 | KHAM | Kobresia humilis alpine meadow |
241 | SAOS | Salix oritrepha scrubland | 503b | KFKM | Kobresia folifolia alpine meadow |
241a | SOBC | Salix oritrepha, bush cinquefoil scrubland | 504a | TWSS | Tibet wormwood, sedge swamp alpine meadow |
246 | BUCS | Bush cinquefoil scrubland | 506 | ENRN | Elymus nutans, roegneria nutans |
312 | SYRD | Sympegma regelii desert | 556 | SMSS | Saussurea medusa maxim, saussurea sparse vegetation |
369 | STKS | Stipa krylovii steppe | 557 | SRHS | Saussurea, rhodiola rosea, herba cremanthodium sparse vegetation |
374 | LONS | Looseflower needlegrass steppe | 561 | HSPR | Highland barley, spring wheat, potato, round radish, pea, rape |
375 | SBSB | Stipa breviflora, stipa bungeana steppe | Gs | SNOW | Glacier snow |
Standard | NSE | RSR | PBIAS (%) |
---|---|---|---|
Very good | 0.75 < NSE ≤ 1.00 | 0.00 < RSR ≤ 0.50 | PBIAS < ±10 |
Good | 0.65 < NSE ≤ 0.75 | 0.50 < RSR ≤ 0.60 | ±10 ≤ PBIAS < ±15 |
Satisfactory | 0.50 < NSE ≤ 0.65 | 0.60 < RSR ≤ 0.70 | ±15 ≤ PBIAS < ±25 |
Unsatisfactory | NSE ≤ 0.50 | RSR > 0.7 | PBIAS ≥ ±25 |
Elements | a | r | RMSE | RSR | PBIAS |
---|---|---|---|---|---|
Temperature | 1.04 | 1.00 | 2.26 | 0.10 | 1.82 |
Specific humidity | 0.88 | 0.97 | 0.00 | 0.36 | −27.35 |
Wind speed | 0.93 | 0.93 | 4.08 | 0.42 | 6.77 |
Parameter | Description | Hydrologic Process | Range | Value | Sensitive |
---|---|---|---|---|---|
Cn2 | Moisture condition curve number | Surface runoff | −0.2–0.2 | −10–−6 | 1 |
Tlaps | Temperature lapse rate (°C/km) | Snow fall and melt, evapotranspiration | −15–15 | −5.5 | 2 |
Alpha_Bf | Baseflow recession constant | Baseflow | 0–1 | 0.072–0.06 | 3 |
Esco | Soil evaporation compensation factor | Soil water and soil evaporation | 0–1 | 0.75–0.90 | 4 |
Sol_Z | Depth from soil surface to bottom of layer (mm) | Soil water | 0–3500 | 100–1700 | 5 |
Ch_K2 | Effective hydraulic conductivity in main channel alluvium (mm/h) | Concentration of channel | −0.01–500 | 13–35 | 6 |
Sol_Awc | Available soil water capacity (mm/mm) | Soil water | 0.01–0.4 | 0.02–0.04 | 7 |
Sol_K | Saturated hydraulic conductivity of first layer (mm/h) | Infiltration and soil water | 0–300 | 0.15–0.2 | 8 |
Bali | Potential maximum leaf area index for the plant | Interception | 0–10 | 0.05–0.09 | 9 |
Canmx | Maximum canopy storage (mm) | Interception | 0–10 | 0.06–0.09 | 10 |
Station | Calibration (January 1998–December 2004) | Validation (January 2005–December 2010) | ||||||
---|---|---|---|---|---|---|---|---|
NSE | RSR | PBIAS (%) | R2 | NSE | RSR | PBIAS (%) | R2 | |
Yingluoxia | 0.66 | 0.57 | −7.24 | 0.75 | 0.82 | 0.46 | 9.13 | 0.83 |
Qilian | 0.75 | 0.49 | −4.32 | 0.80 | 0.69 | 0.62 | 6.74 | 0.76 |
Zhamashike | 0.69 | 0.55 | 6.91 | 0.73 | 0.78 | 0.44 | 18.34 | 0.81 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, S.; Ruan, H.; Lu, Z.; Yang, D.; Xiong, Z.; Yin, Z. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model. Water 2016, 8, 455. https://doi.org/10.3390/w8100455
Zou S, Ruan H, Lu Z, Yang D, Xiong Z, Yin Z. Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model. Water. 2016; 8(10):455. https://doi.org/10.3390/w8100455
Chicago/Turabian StyleZou, Songbing, Hongwei Ruan, Zhixiang Lu, Dawen Yang, Zhe Xiong, and Zhenliang Yin. 2016. "Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model" Water 8, no. 10: 455. https://doi.org/10.3390/w8100455
APA StyleZou, S., Ruan, H., Lu, Z., Yang, D., Xiong, Z., & Yin, Z. (2016). Runoff Simulation in the Upper Reaches of Heihe River Basin Based on the RIEMS–SWAT Model. Water, 8(10), 455. https://doi.org/10.3390/w8100455