Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Analysis Factors and Methods
2.4. Evaluation Criteria
2.5. Data Analysis
Items | I | II | III | IV |
---|---|---|---|---|
DIN | 0.2 | 0.3 | 0.4 | 0.5 |
PO43−–P | 0.015 | 0.03 | 0.03 | 0.045 |
DO | 6 | 5 | 4 | 3 |
COD | 2 | 3 | 4 | 5 |
BOD5 | 1 | 3 | 4 | 5 |
Oil | 0.05 | 0.05 | 0.3 | 0.5 |
Hg | 0.00005 | 0.0002 | 0.0002 | 0.0005 |
Cr | 0.05 | 0.1 | 0.2 | 0.5 |
Cu | 0.005 | 0.01 | 0.05 | 0.05 |
As | 0.02 | 0.03 | 0.05 | 0.05 |
Zn | 0.02 | 0.05 | 0.1 | 0.5 |
Pb | 0.001 | 0.005 | 0.01 | 0.05 |
Cd | 0.001 | 0.005 | 0.01 | 0.01 |
2.6. Modeling Process of Genetic Algorithm-based Fuzzy Comprehensive Evaluation
3. Results
3.1. Spatial Distribution of Organic Pollutants
3.2. Spatial Distribution of Nutrients
3.3. Spatial Distribution of Heavy Metals
4. Discussion
4.1. Assessment of Organic Pollution
A-Value | Polluted Condition Grade | Water Quality |
---|---|---|
<0 | 1 | Great |
0–1 | 2 | Good |
1–2 | 3 | polluted |
2–3 | 4 | slightly polluted |
3–4 | 5 | moderately polluted |
>4 | 6 | seriously polluted |
4.2. Evaluation of Eutrophication
4.2.1. Si:N:P Ratio of Nutrients
4.2.2. Analysis of the Composition of DIN
4.2.3. Eutrophication Level Method
E-Value | Nutritional Level Grade | Nutritional Level |
---|---|---|
0–0.5 | 1 | oligotrophication |
0.5–1.0 | 2 | less eutrophication |
1.0–3.0 | 3 | eutrophication |
≥3.0 | 4 | high eutrophication |
4.3. Assessment of Heavy Metals in Seawater
4.3.1. Comparison with Other Study Areas
Sample Area | As | Cd | Cu | Hg | Pb | Zn | Cr | Ref. |
---|---|---|---|---|---|---|---|---|
Dongzhaigang Mangrove Wetland | 1.315 | 0.3028 | 0.3631 | 0.005 | 3.873 | 62.913 | 8.533 | This study |
Beilun River Estuary Wetland, Guangxi | 0.75 | 0.030 | 0.77 | 0.092 | 0.79 | 14.50 | 0.50 | [31] |
Sungei Buloh Wetland Reserve, Singapore | 0.470 | 0.159 | 0.284 | ND | 0.193 | 1.577 | 0.094 | [32] |
Seletar River, Singapore | 1.080 | 0.254 | 0.640 | ND | 0.980 | 3.731 | 0.640 | [32] |
The Yangtze River Estuary, China | ND | 0.076 | 3.10 | 0.026 | 2.150 | ND | ND | [33] |
The Gulf of Suez, Egypt | ND | 0.150–0.180 | 1.16–5.33 | ND | 1.840–2.570 | 8.130–23.240 | ND | [34] |
Port Jackson, Australia | ND | 0.006–0.104 | 0.932–2.55 | ND | ND | 3.27–9.66 | ND | [35] |
South China Sea | ND | 0.007 | 0.100 | ND | 0.058 | 0.086 | ND | [36] |
The South Yellow Sea, China | 1.66 | 0.053 | 1.12 | 0.009 | 0.30 | 3.44 | ND | [37] |
Bohai, China | 0.79–2.06 | 0.08–0.19 | 1.60–4.10 | 0.004–0.009 | 3.63–12.65 | 3.0–55.0 | 0.11–1.15 | [38] |
Tanshui Coast, Taiwan | ND | 0.03–0.14 | 0.37–1.74 | ND | 0.09–0.43 | 10.3–74.9 | 4.35–6.86 | [39] |
4.3.2. Water Quality Index (WQI) Model
P | WQI | Pollution Level |
---|---|---|
P ≤ 1 | WQI ≤ 1 | less polluted |
- | 1 < WQI ≤2 | slightly polluted |
- | 2 < WQI ≤ 3 | moderately polluted |
P > 1 | WQI > 3 | seriously polluted |
4.4. Results of Genetic Algorithm-Based Fuzzy Comprehensive Evaluation in the Health Assessment of Water Quality
N Value | Assessment | Grade |
---|---|---|
N ≥ 3.6 | Healthy | Good |
2.8 ≤ N < 3.6 | Sub-healthy | Normal |
2 ≤ N < 2.8 | Less healthy | Poor |
N < 2 | Unhealthy | Very poor |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Garcia-Barcina, J.M.; Gonzalez-Oreja, J.A.; de la Sota, A. Assessing the improvement of the bilbao estuary water quality in response to pollution abatement measures. Water Res. 2006, 40, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Zagars, M.; Ikejima, K.; Kasai, A.; Arai, N.; Tongnunui, P. Trophic characteristics of a mangrove fish community in southwest thailand: Important mangrove contribution and intraspecies feeding variability. Estuar. Coast. Shelf Sci. 2013, 119, 145–152. [Google Scholar] [CrossRef]
- Qiu, Y.W.; Yu, K.F.; Zhang, G.; Wang, W.X. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. J. Hazard. Mater. 2011, 190, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. 2001, 210, 223–253. [Google Scholar] [CrossRef]
- Boesch, D.F. Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 2002, 25, 886–900. [Google Scholar] [CrossRef]
- Chen, W.; Chen, C.; Li, L.; Xing, L.; Huang, G.; Wu, C. Spatiotemporal analysis of extreme hourly precipitation patterns in Hainan Island, South China. Water 2015, 7, 2239–2253. [Google Scholar] [CrossRef]
- Liao, Q.Y.; Li, J.; Zhang, J.H.; Li, M.; Lu, Y.; Xu, R.L. An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Eur. J. Soil Biol. 2009, 45, 214–219. [Google Scholar] [CrossRef]
- Lin, H.W.; Lin, W.H. The damages and controlling strategies of Sphaeroma in Dongzhaigang Mangroves. Trop. For. 2013, 4, 35–36. (In Chinese) [Google Scholar]
- Xu, D.; Liao, B.W.; Zhu, N.H.; Guan, W.; Li, S.C.; Zhong, C.R. A primary analysis on mangroves degradation in Dongzhaigang of Hainan Island. Ecol. Sci. 2014, 2, 294–300. (In Chinese) [Google Scholar]
- Aydinol, F.; Ilter, T.; Gurdal, K.; Hurrem, B. Sea water quality assessment of Prince Islands’ Beaches in Istanbul. Environ. Monit. Assess. 2012, 184, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xie, G.; Li, Q.; Chen, X.; Zhou, Q. Analysis and evaluation of seawater quality status of mangrove national nature reserve in Dongzhai port. Trans. Oceanol. Limnol. 2010, 41, 53–60. (In Chinese) [Google Scholar]
- Ministry of Environmental Protection of China (MEP). Sea Water Quality Standard (GB3097–1997); MEP: Beijing, China, 1997; pp. 654–658. (In Chinese) [Google Scholar]
- Liu, S.; Butler, D.; Brazier, R.; Heathwaite, L.; Khu, S.T. Using genetic algorithms to calibrate a water quality model. Sci. Total Environ. 2007, 374, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, M.; van Vuuren, S.J.; van Zyl, J.E. Optimising water distribution systems using a weighted penalty in a genetic algorithm. Water SA 2008, 35, 537–548. [Google Scholar]
- Xu, T.Y.; Qin, X.S. Solving Water Quality Management Problem through Combined Genetic Algorithm and Fuzzy Simulation. J. Environ. Inf. 2013, 22, 39–48. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQSIQ). The Specification for Marine Monitoring Part 3: Sample Collection, Storage and Transportation (GB17378.3-2007); GAQSIQ: Beijing, China, 2007. (In Chinese) [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (GAQSIQ). The Specification for Marine Monitoring Part 4: Seawater Analysis (GB17378.4-2007); GAQSIQ: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Brockmann, U.H.; Laane, R.W.P.M.; Postma, J. Cycling of nutrient elements in the North Sea. Neth. J. Sea Res. 1990, 26, 239–264. [Google Scholar] [CrossRef]
- Kim, J.B.; Hong, S.; Lee, W.C.; Lee, Y.W.; Kim, H.C.; Cho, Y. Evaluation of phytoplankton community composition in the eutrophic Masan Bay by HPLC pigment analysis. J. Environ. Biol. 2015, 36, 491–498. [Google Scholar] [PubMed]
- Ssfcn. “11th Five-Year Plan” for the Division of Marine Function in Haikou. Available online: http://www.ssfcn.com (accessed on 21 August 2010).
- Anhuinews. The Division of Marine Function in Hainan Island (2011–2020). Available online: http://www.anhuinews.com/zhuyeguanli/system/2012/11/08/005306040.shtml (accessed on 8 November 2012).
- Conley, D.J.; Malone, T.C. Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phytoplankton biomass. Mar. Ecol. Prog. 1992, 81, 121–128. [Google Scholar] [CrossRef]
- Li, M.; Xu, K.; Watanabe, M.; Chen, Z. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar. Coast. Shelf Sci. 2007, 71, 3–12. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef]
- Redfield, A.C. The influence of organisms on the composition of sea-water. Sea 1963, 2, 26–77. [Google Scholar]
- Brzezinski, M.A. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables1. J. Phycol. 1985, 21, 347–357. [Google Scholar] [CrossRef]
- Dortch, Q.; Packard, T.T. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep Sea Res. A 1989, 36, 223–240. [Google Scholar] [CrossRef]
- Justic, D.; Rabalais, N.N.; Turner, R.E. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 1995, 30, 41–46. [Google Scholar] [CrossRef]
- Horrigan, S.G.; Montoya, J.P.; Nevins, J.L.; Mccarthy, J.J. Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar. Coast. Shelf Sci. 1990, 30, 393–410. [Google Scholar] [CrossRef]
- Wong, W.W.; Grace, M.R.; Cartwright, I.; Cook, P.L.M. Sources and fate of nitrate in a groundwater-fed estuary elucidated using stable isotope ratios of nitrogen and oxygen. Limnol. Oceanogr. 2014, 59, 1493–1509. [Google Scholar] [CrossRef]
- Luo, W.C.; Su, B.; Liu, X.; Zhong, Q.P.; Yang, B. Spatial and temporal distributions and influence factors of the dissolved heavy metals in surface water in the mangrove reserve at the Beilun River Estuary in Guangxi. Mar. Sci. Bull. 2014, 6, 668–675. (In Chinese) [Google Scholar]
- Cuong, D.T.; Bayen, S.; Wurl, O.; Subramanian, K.; Wong, K.K.; Sivasothi, N.; Obbard, J.P. Heavy metal contamination in mangrove habitats of singapore. Mar. Sci. Bull. 2006, 50, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, A. Distribution changes of dissolved heavy metal concentration in Changjiang estuary and its adjacent waters, 1984–2000. Mar. Sci. Bull. 2003, 22, 32–38. (In Chinese) [Google Scholar]
- El-Moselhy, K.M.; Gabal, M.N. Trace metals in water, sediments and marine organisms from the northern part of the gulf of suez, Red Sea. J. Mar. Syst. 2004, 46, 39–46. [Google Scholar] [CrossRef]
- Hatje, V.; Apte, S.C.; Hales, L.T.; Birch, G.F. Dissolved trace metal distributions in port jackson estuary (sydney harbour), Australia. Mar. Sci. Bull. 2003, 46, 719–730. [Google Scholar] [CrossRef]
- Yu, T. Study about dissolved heavy metals and their background values in South China Sea. J. Oceanogr. Taiwan Strait 2003, 22, 328–333. [Google Scholar]
- He, Z.P. Variation characteristics and controlling factors of heavy metals in the south yellow sea surface seawaters. Environ. Sci. 2008, 29, 1153–1162. (In Chinese) [Google Scholar]
- Meng, W.; Qin, Y.; Zheng, B.; Zhang, L. Heavy metal pollution in Tianjin Bohai bay, China. J. Environ. Sci. 2008, 20, 814–819. [Google Scholar] [CrossRef]
- Fang, T.H.; Hwang, J.S.; Hsiao, S.H.; Chen, H.Y. Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast. Mar. Environ. Res. 2006, 61, 224–243. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L. Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: Relationship with fish condition factor. Environ. Pollut. 2003, 126, 9–19. [Google Scholar] [CrossRef]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Flores, J.C. Comments to the use of water quality indices to verify the impact of cordoba city (Argentina) on Suquia river. Water Res. 2002, 36, 4664–4666. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Liang, C. Application of fuzzy matter-element model based on coefficients of entropy in comprehensive evaluation of water quality. J. Hydraul. Eng. 2005, 36, 1057–1061. [Google Scholar]
- Wu, J.W.; Wu, X.M.; Bo, W.; Hu, N.L.; Guo, L.; Zhang, K.C. Application to water quality assessment based on the fuzzy pattern recognition model by projection pursuit. J. Water Resour. Water Eng. 2008, 3, 93–97. (In Chinese) [Google Scholar]
- Fulazzaky, M.A. Water quality evaluation system to assess the status and the suitability of the citarum river water to different uses. Environ. Monit. Assess. 2010, 168, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Sadati, S.K.; Speelman, S.; Sabouhi, M.; Gitizadeh, M.; Ghahraman, B. Optimal irrigation water allocation using a genetic algorithm under various weather conditions. Water 2014, 6, 3068–3084. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-C.; Chung, C.-E. Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system. Water 2014, 6, 1642–1661. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Li, F.; Zeng, X.; Shen, K.; He, H.; Liang, Y.; Gan, H.; Zhang, J.; Long, X.; Wei, Y. Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang. Water 2015, 7, 4821-4847. https://doi.org/10.3390/w7094821
Wen J, Li F, Zeng X, Shen K, He H, Liang Y, Gan H, Zhang J, Long X, Wei Y. Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang. Water. 2015; 7(9):4821-4847. https://doi.org/10.3390/w7094821
Chicago/Turabian StyleWen, Jiasheng, Feng Li, Xiangyun Zeng, Kaixuan Shen, Haijun He, Yanyan Liang, Huayang Gan, Jinwei Zhang, Xiaolin Long, and Yansha Wei. 2015. "Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang" Water 7, no. 9: 4821-4847. https://doi.org/10.3390/w7094821
APA StyleWen, J., Li, F., Zeng, X., Shen, K., He, H., Liang, Y., Gan, H., Zhang, J., Long, X., & Wei, Y. (2015). Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang. Water, 7(9), 4821-4847. https://doi.org/10.3390/w7094821