Transferable Principles for Managing the Nexus: Lessons from Historical Global Water Modelling of Central Asia
Abstract
:1. Introduction
2. Method and Data
2.1. Global, Spatially Distributed Estimates of Water Availability and Consumption
2.2. Construction of Historical Assessments in Central Asia
3. Results and Interpretation: History of the Nexus in Central Asia through a Global Water Lens
3.1. Decadal Water Availability
3.2. Decadal Blue Water Consumption
3.2.1. Partitioning between Human Use and Environmental Water
3.2.2. Distribution of Human Water Consumption per Capita
3.2.3. Distribution of Water by Activity
3.2.4. Irrigation
3.2.5. Energy Production
3.2.6. Other Activities
3.3. Decadal Water Scarcity
3.4. Impact of Human Use on Seasonal Discharge
4. Discussion: Implications for the Water-Energy-Food Security Nexus
- •
- Firstly, changes in the system do not necessarily occur within the typical nexus sectors of water, energy, and food security. Key changes in Central Asia instead relate to non-food irrigation and the loss of ecosystems. This raises the question: what subsystems should be considered within the nexus?
- •
- Secondly, trade-offs within the nexus (e.g., between water, energy, and food security objectives) are to some extent inevitable (e.g., the use of water by irrigation will always reduce flows). This means that is important to understand where the boundary is located that determines whether changes are or are not permissible (e.g., a small reduction in flows to the Aral Sea vs. loss of livelihoods). The question becomes: what boundaries can acceptably be crossed within the nexus?
- •
- Thirdly, crossing boundaries implies that the system is transformed, often resulting in new dependencies being introduced (e.g., on water releases from transboundary reservoirs in other upstream countries). New trade-offs can therefore be created in the process of reducing existing trade-offs within the nexus (e.g., providing water for local food needs vs. cotton export). There is a need to ask: how will managing the nexus change system dependencies?
- •
- Fourthly, these trade-offs, boundaries, and dependencies were historically already influenced by global relationships (e.g., trade of cotton), and this trend is only strengthening as a result of globalization. We discuss: what say should global stakeholders have in managing the water-energy-food security nexus?
- •
- Finally, given that this paper has focused on the use of a global model, we address the question: what role does global data play?
4.1. What Subsystems Should Be Considered within the Nexus?
4.2. What Boundaries Can Acceptably Be Crossed within the Nexus?
Assessment | Relevant Figure | Function | Process to Achieve Function | Transformation after Boundary Is Crossed |
---|---|---|---|---|
Water Availability | Availability of blue water for socio-ecological systems | Partitioning of water flow by location within global water system | Unsustainable reliance on stored water, e.g., fossil groundwater, dependence on energy-intensive physical, or virtual water transfers | |
Human vs. Environmental Water Consumption | Provision of goods and services by ecosystem and humans | Partitioning of water between human use and environmental water (evaporation pathway) | Reduction in ecosystem services, shift towards dependence on energy-intensive human services | |
Human per Capita Consumption | Provision of individual human needs and wants, including food and water | Partitioning of water (and its benefits) within population | In extreme cases, starvation, malnutrition, hunger, but also poverty, inequality, and social unrest | |
Water by Activity | Provision of human goods and services underpinning human quality of life globally (including energy) | Partitioning of water by activity (reflecting values and power relationships) | Shift in dominant economic power, employment, cultural identity of population, and their diversity | |
Water Scarcity | Adaptation to cope with external drivers and internal changing needs and wants | Feedback between sub-systems, including water users, governance, and broader environment | Inability of society to adapt to changes; competitive advantage to actors that are better at learning | |
Impact of Human Use on Seasonal Discharge | Maintenance of flows and water availability at operational time-scales | Partitioning of water flows in time | Impacts of other transformations depend on their need for or aversion to variability and peak flows, e.g., flooding and timing of irrigation season |
4.3. How Will Managing the Nexus Change System Dependencies?
Dependence on … | vs. Dependence on … |
---|---|
Dams and Diversions | Naturally Available Water Supply |
Centralized decision making, e.g., within Soviet Union | Capabilities and interactions of separate nation states, i.e., decentralized |
Goodwill and trust with other countries sharing water resource | Maintaining control over water resource, e.g., coercion or hegemony |
Ongoing maintenance of large-scale infrastructure, e.g., dams and canals | Sufficiency of small-scale user-maintained schemes |
Demand for exports, e.g., price of cotton | Self-sufficiency of closed local economy |
Livelihoods through jobs, incl. export industries | Subsistence farming |
Food imports | Food self-sufficiency or sovereignty |
External expertise, e.g., construction, maintenance of complex irrigation infrastructure | Local expertise, e.g., local solutions with local training |
Engineering solutions to maintain ecosystems | Continuing naturally required inflows |
Economic strength to pay for system operation | Limitations of solutions with low ongoing monetary commitments |
Institutional capacity to understand and act on complex interactions | Suitability of system regimes without complex interactions |
4.4. What Say Should Global Stakeholders Have in Managing the Water-Energy-Food Security Nexus?
4.5. What Role Does Global Data Play? Contributions and Limitations of the Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoff, H. Understanding the Nexus: Background Paper for the Bonn2011 Nexus Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Granit, J.; Jägerskog, A.; Lindström, A.; Björklund, G.; Bullock, A.; Löfgren, R.; de Gooijer, G.; Pettigrew, S. Regional options for addressing the water, energy and food nexus in Central Asia and the Aral sea basin. Int. J. Water Resour. Dev. 2012, 28, 419–432. [Google Scholar] [CrossRef]
- Hayami, Y.; Ruttan, V.W. Agricultural Development: An International Perspective; The Johns Hopkins Press: Baltimore, MD, USA; London, UK, 1971. [Google Scholar]
- Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O. Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci. 2014, 18, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Orr, S.; Pittock, J.; Chapagain, A.; Dumaresq, D. Dams on the Mekong river: Lost fish protein and the implications for land and water resources. Glob. Environ. Chang. 2012, 22, 925–932. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar]
- Hussey, K.; Pittock, J. The energy-water nexus: Managing the links between energy and water for a sustainable future. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Water in the West. Water and Energy Nexus: A Literature Review; Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Scott, C.A.; Pierce, S.A.; Pasqualetti, M.J.; Jones, A.L.; Montz, B.E.; Hoover, J.H. Policy and institutional dimensions of the water-energy nexus. Energy Policy 2011, 39, 6622–6630. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Varis, O. Central Asian Waters: Social, Economic, Environmental and Governance Puzzle; Helsinki University of Technology: Helsinki, Finland, 2008. [Google Scholar]
- Dukhovny, V.A.; de Schutter, J. Water in Central Asia: Past, Present, Future; CRC Press/Balkema: London, UK, 2011. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Strengthening Water Management and Transboundary Water Cooperation in Central Asia: The Role of Unece Environmental Conventions; UNECE: Geneva, Switerland, 2011. [Google Scholar]
- United Nations Environmental Programme (UNEP). Environment and Security in the Amu Darya Basin; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- Stucki, V.; Wegerich, K.; Rahaman, M.M.; Varis, O. Introduction: Water and security in Central Asia—Solving a rubik’s cube. Int. J. Water Resour. Dev. 2012, 28, 395–397. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Merz, B.; Frede, H.G. Introduction to “water in Central Asia—Perspectives under global change”. Glob. Planet. Chang. 2013, 110, 1–3. [Google Scholar] [CrossRef]
- Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in Central Asia in the early twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487–499. [Google Scholar] [CrossRef]
- World Bank. Water Energy Nexus in Central Asia: Improving Regional Cooperation in the Syr Darya Basin; World Bank: Washington, DC, USA, 2004; pp. 1–59. [Google Scholar]
- Wegerich, K. Coping with disintegration of a river-basin management system: Multi-dimensional issues in Central Asia. Water Policy 2004, 6, 335–344. [Google Scholar]
- Abdolvand, B.; Mez, L.; Winter, K.; Mirsaeedi-Gloßner, S.; Schütt, B.; Rost, K.; Bar, J. The dimension of water in Central Asia: Security concerns and the long road of capacity building. Environ. Earth Sci. 2015, 73, 897–912. [Google Scholar] [CrossRef]
- Varis, O. Resources: Curb vast water use in Central Asia. Nature 2014, 514, 27. [Google Scholar] [CrossRef] [PubMed]
- Stucki, V.; Sojamo, S. Nouns and numbers of the water-energy-security nexus in Central Asia. Int. J. Water Resour. Dev. 2012, 28, 399–418. [Google Scholar] [CrossRef]
- Soliev, I.; Wegerich, K.; Kazbekov, J. The costs of benefit sharing: Historical and institutional analysis of shared water development in the Ferghana valley, the Syr Darya basin. Water 2015, 7, 2728–2752. [Google Scholar] [CrossRef]
- Jalilov, S.-M.; Keskinen, M.; Varis, O. Sharing benefits in transboundary rivers: An experimental case study of Central Asian energy-agriculture dispute. Water. submitted.
- Varis, O.; Kummu, M. The major Central Asian river basins: An assessment of vulnerability. Int. J. Water Resour. Dev. 2012, 28, 433–452. [Google Scholar] [CrossRef]
- Porkka, M.; Kummu, M.; Siebert, S.; Flörke, M. The role of virtual water flows in physical water scarcity: The case of Central Asia. Int. J. Water Resour. Dev. 2012, 28, 453–474. [Google Scholar] [CrossRef]
- Aus der Beek, T.; Voß, F.; Flörke, M. Modelling the impact of global change on the hydrological system of the Aral sea basin. Phys. Chem. Earth A B C 2011, 36, 684–695. [Google Scholar] [CrossRef]
- Malsy, M.; Aus der Beek, T.; Eisner, S.; Flörke, M. Climate change impacts on Central Asian water resources. Adv. Geosci. 2012, 32, 77–83. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Österle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef]
- Haddeland, I.; Clark, D.B.; Franssen, W.; Ludwig, F.; Voß, F.; Arnell, N.W.; Bertrand, N.; Best, M.; Folwell, S.; Gerten, D.; et al. Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeorol. 2011, 12, 869–884. [Google Scholar]
- Flörke, M.; Kynast, E.; Bärlund, I.; Eisner, S.; Wimmer, F.; Alcamo, J. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Glob. Environ. Chang. 2013, 23, 144–156. [Google Scholar] [CrossRef]
- Salmivaara, A.; Porkka, M.; Kummu, M.; Keskinen, M.; Guillaume, J.; Varis, O. Exploring the modifiable areal unit problem in spatial water assessments: A case of water shortage in monsoon Asia. Water 2015, 7, 898–917. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [PubMed]
- Rockström, J.; Falkenmark, M.; Allan, T.; Folke, C.; Gordon, L.; Jägerskog, A.; Kummu, M.; Lannerstad, M.; Meybeck, M.; Molden, D.; et al. The unfolding water drama in the anthropocene: Towards a resilience based perspective on water for global sustainability. Ecohydrology 2014, 7, 1249–1261. [Google Scholar]
- Allouche, J.; Middleton, C.; Gyawali, D. Technical veil, hidden politics: Interrogating the power linkages behind the nexus. Water Altern. 2015, 8, 610–626. [Google Scholar]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef]
- Müller Schmied, H.; Eisner, S.; Franz, D.; Wattenbach, M.; Portmann, F.T.; Flörke, M.; Döll, P. Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrol. Earth Syst. Sci. 2014, 18, 3511–3538. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, W00A12. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 034006. [Google Scholar]
- Cai, X.; Rosegrant, M.W. Global water demand and supply projections. Water Int. 2002, 27, 159–169. [Google Scholar] [CrossRef]
- De Fraiture, C. Integrated water and food analysis at the global and basin level. An application of Watersim. Water Resour. Manag. 2007, 21, 185–198. [Google Scholar] [CrossRef]
- Defense Mapping Agency. Digital Chart of the World, Accessed via Diva-gis Repository. Available online: http://www.diva-gis.org/Data (accessed on 14 July 2015).
- Global Runoff Data Centre. Major River Basins of the World; Federal Institute of Hydrology (BfG), Global Runoff Data Centre: Koblenz, Germany, 2007. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Wallace, J.S.; Acreman, M.C.; Sullivan, C.A. The sharing of water between society and ecosystems: From conflict to catchment-based co-management. Philos. Trans. Royal Soc. Lond. B Biol. Sci. 2003, 358, 2011–2026. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M. The massive water scarcity now threatening Africa: Why isn’t it being addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Falkenmark, M. Fresh water: Time for a modified approach. Ambio 1986, 15, 192–200. [Google Scholar]
- Falkenmark, M.; Lindh, G. Water for a Starving World; Westview Press: Boulder, CO, USA, 1976. [Google Scholar]
- Klein Goldewijk, K.; Beusen, A.; Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: Hyde 3.1. Holocene 2010, 20, 565–573. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Schär, C.; Vasilina, L.; Pertziger, F.; Dirren, S. Seasonal runoff forecasting using precipitation from meteorological data assimilation systems. J. Hydrometeorol. 2004, 5, 959–973. [Google Scholar] [CrossRef]
- Belyaev, A.V. Water balance and water resources of the Aral sea basin and its man-induced changes. GeoJournal 1995, 35, 17–21. [Google Scholar] [CrossRef]
- Wegerich, K. Passing over the conflict. The Chu Talas basin agreement as a model for Central Asia? In Central Asian Waters: Social, Economic, Environmental and Governance Puzzle; Helsinki University of Technology: Helsinki, Finland, 2008; pp. 117–131. [Google Scholar]
- Aladin, N.V.; Plotnikov, I.S. Large saline lakes of former ussr: A summary review. In Saline Lakes V; Hurlbert, S., Ed.; Springer: Houten, The Netherlands, 1993; Volume 87, pp. 1–12. [Google Scholar]
- O’Hara, S.L. Central asia’s water resources: Contemporary and future management issues. Int. J. Water Resour. Dev. 2000, 16, 423–441. [Google Scholar] [CrossRef]
- Rashid, K.; Nodirbek, M.; Asqar, N.; Dilafruz, K.; Jobir, S. Qualitative and quantitative assessment of water resources of Aydar Arnasay lakes system (AALS). J. Water Resour. Prot. 2013, 5, 941–952. [Google Scholar]
- Van Beek, E.; Bozorgy, B.; Vekerdy, Z.; Meijer, K. Limits to agricultural growth in the sistan closed inland delta, Iran. Irrig. Drainage Syst. 2008, 22, 131–143. [Google Scholar] [CrossRef]
- Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef]
- Dahl, C.; Kuralbayeva, K. Energy and the environment in Kazakhstan. Energy Policy 2001, 29, 429–440. [Google Scholar] [CrossRef]
- Renaud, F.G.; Syvitski, J.P.M.; Sebesvari, Z.; Werners, S.E.; Kremer, H.; Kuenzer, C.; Ramesh, R.; Jeuken, A.; Friedrich, J. Tipping from the holocene to the anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 2013, 5, 644–654. [Google Scholar] [CrossRef]
- Gordon, L.J.; Peterson, G.D.; Bennett, E.M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 2008, 23, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Gerten, D.; Hoff, H.; Rockström, J.; Jägermeyr, J.; Kummu, M.; Pastor, A.V. Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Curr. Opin. Environ. Sustain. 2013, 5, 551–558. [Google Scholar] [CrossRef]
- Micklin, P. The aral sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Saiko, T.A.; Zonn, I.S. Irrigation expansion and dynamics of desertification in the circum-Aral region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Gordon, L.J.; Steffen, W.; Jönsson, B.F.; Folke, C.; Falkenmark, M.; Johannessen, Å. Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. USA 2005, 102, 7612–7617. [Google Scholar] [PubMed]
- Rockström, J. Water for food and nature in drough-prone tropics: Vapour shift in rain-fed agriculture. Philos. Trans. R. Soc. Lond. B 2003, 358, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, S.L. Irrigation and land degradation: Implications for agriculture in Turkmenistan, Central Asia. J. Arid Environ. 1997, 37, 165–179. [Google Scholar] [CrossRef]
- Abdullaev, I.; de Fraiture, C.; Giordano, M.; Yakubov, M.; Rasulov, A. Agricultural water use and trade in Uzbekistan: Situation and potential impacts of market liberalization. Int. J. Water Resour. Dev. 2009, 25, 47–63. [Google Scholar] [CrossRef]
- Abdullaev, I.; Rakhmatullaev, S. Transformation of water management in Central Asia: From state-centric, hydraulic mission to socio-political control. Environ. Earth Sci. 2015, 73, 849–861. [Google Scholar] [CrossRef]
- Molle, F.; Mollinga, P.P.; Wester, P. Hydraulic bureaucracies and the hydraulic mission: Flows of water, flows of power. Water Altern. 2009, 2, 328–349. [Google Scholar]
- Yanitsky, O.N. The shift of environmental debates in Russia. Curr. Sociol. 2009, 57, 747–766. [Google Scholar] [CrossRef]
- Libert, B.; Orolbaev, E.; Steklov, Y. Water and energy crisis in Central Asia. China Eurasia Forum Q. 2008, 6, 9–20. [Google Scholar]
- Vassolo, S.; Döll, P. Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour. Res. 2005, 41, W04010. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J. A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services. Phys. Chem. Earth A B C 2015, 79–82, 40–46. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Schlüter, M.; Khasankhanova, G.; Talskikh, V.; Taryannikova, R.; Agaltseva, N.; Joldasova, I.; Ibragimov, R.; Abdullaev, U. Enhancing resilience to water flow uncertainty by integrating environmental flows into water management in the Amudarya river, Central Asia. Glob. Planet. Chang. 2013, 110, 114–129. [Google Scholar] [CrossRef]
- Cai, X.; McKinney, D.C.; Rosegrant, M.W. Sustainability analysis for irrigation water management in the Aral sea region. Agric. Syst. 2003, 76, 1043–1066. [Google Scholar] [CrossRef]
- Jalilov, S.-M.; Amer, S.; Ward, F. Water, food, and energy security: An elusive search for balance in Central Asia. Water Resour. Manag. 2013, 27, 3959–3979. [Google Scholar] [CrossRef]
- Eamus, D.; Froend, R.; Loomes, R.; Hose, G.; Murray, B. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust. J. Bot. 2006, 54, 97–114. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef]
- Dearing, J.A.; Wang, R.; Zhang, K.; Dyke, J.G.; Haberl, H.; Hossain, M.S.; Langdon, P.G.; Lenton, T.M.; Raworth, K.; Brown, S.; et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Chang. 2014, 28, 227–238. [Google Scholar] [Green Version]
- Raworth, K. A safe and just space for humanity: Can we live within the doughnut. Oxfam Policy Pract. Clim. Chang. Resil. 2012, 8, 1–26. [Google Scholar]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar]
- Luce, R.D.; Raiffa, H. Games and Decisions: Introduction and Critical Survey; Duncan: New York, NY, USA, 1985. [Google Scholar]
- Pierce, S.A.; Sharp, J.M.; Guillaume, J.H.A.; Mace, R.E.; Eaton, D.J. Aquifer-yield continuum as a guide and typology for science-based groundwater management. Hydrogeol. J. 2012, 21, 331–340. [Google Scholar] [CrossRef]
- Sojamo, S. Illustrating co-existing conflict and cooperation in the Aral sea basin with TWINS approach. In Central Asian Waters: Social, Economic, Environmental and Governance Puzzle; Helsinki University of Technology: Helsinki, Finland, 2008; pp. 75–88. [Google Scholar]
- Gready, P. Rights-based approaches to development: What is the value-added? Dev. Pract. 2008, 18, 735–747. [Google Scholar] [CrossRef]
- Cornwall, A.; Nyamu-Musembi, C. Putting the “rights-based approach” to development into perspective. Third World Q. 2004, 25, 1415–1437. [Google Scholar] [CrossRef]
- Young, O.R.; Berkhout, F.; Gallopin, G.C.; Janssen, M.A.; Ostrom, E.; van der Leeuw, S. The globalization of socio-ecological systems: An agenda for scientific research. Glob. Environ. Chang. 2006, 16, 304–316. [Google Scholar] [CrossRef]
- International Fund for Saving the Aral Sea. From the Glaciers to the Aral Sea—Water Unites; International Fund for Saving the Aral Sea: Tashkent, Uzbekistan, 2015. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillaume, J.H.A.; Kummu, M.; Eisner, S.; Varis, O. Transferable Principles for Managing the Nexus: Lessons from Historical Global Water Modelling of Central Asia. Water 2015, 7, 4200-4231. https://doi.org/10.3390/w7084200
Guillaume JHA, Kummu M, Eisner S, Varis O. Transferable Principles for Managing the Nexus: Lessons from Historical Global Water Modelling of Central Asia. Water. 2015; 7(8):4200-4231. https://doi.org/10.3390/w7084200
Chicago/Turabian StyleGuillaume, Joseph H. A., Matti Kummu, Stephanie Eisner, and Olli Varis. 2015. "Transferable Principles for Managing the Nexus: Lessons from Historical Global Water Modelling of Central Asia" Water 7, no. 8: 4200-4231. https://doi.org/10.3390/w7084200