Urban Evolution: The Role of Water
Abstract
:1. Introduction
2. Urban Waters: From Syndrome to Continuum
3. Defining and Reviewing Core Concepts for Tracking Urban Evolution
3.1. Ecology and Evolutionary Biology Related Concepts
3.2. Earth Sciences and Engineering Related Concepts
3.3. Socioecological Related Concepts
4. Tracking Stages of Urban Evolution: Hydrological and Water Quality Drivers
4.1. Sewage Flows: An Evolving Urban Excretory System
4.2. Evolving Drainage: An Expanding Urban Circulatory System
4.3. Evolving Hydrology: An Amplified Urban Hydrologic Pulse
4.4. Evolving Stream Restoration: From Syndrome to Urban Adaptation
4.5. Evolving Salinization of Water: Impervious Surfaces and Salt Diets
4.6. Evolving Alkalinization of Water: Watershed Antacids and Calcium Cycle
5. The Future of Urban Evolution
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations World Water Assessment Programme. Water for Sustainable Urban Human Settlements Briefing Note; United Nations Human Settlements Programme (UN-HABITAT): Perugia, Italy, 2010. [Google Scholar]
- Redman, C.L.; Jones, N.S. The environmental, social, and health dimensions of urban expansion. Popul. Environ. 2005, 26, 505–520. [Google Scholar] [CrossRef]
- United Nations Population Division. World Urbanization Prospects: The 2001 Revision; United Nations: New York, NY, USA, 2002. [Google Scholar]
- Wollheim, W.M.; Green, M.B.; Pellerin, B.A.; Morse, N.B.; Hopkinson, C.S. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed. Estuaries Coasts 2015, 38, 19–34. [Google Scholar] [CrossRef]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Costanza, R.; Graumlich, L.; Steffen, W.; Crumley, C.; Dearing, J.; Hibbard, K.; Leemans, R.; Redman, C.; Schimel, D. Sustainability or to collapse: What can we learn from integrating the history of humans and the rest of nature? Ambio 2007, 36, 522–527. [Google Scholar] [CrossRef]
- De Feo, G.; Angelakis, A.N.; Antoniou, G.P.; El-Gohary, F.; Haut, B.; Passchier, C.W.; Zheng, X.Y. Historical and technical notes on aqueducts from prehistoric to medieval times. Water 2013, 5, 1996–2025. [Google Scholar] [CrossRef]
- Dermody, B.J.; van Beek, R.P.H.; Meeks, E.; Goldewijk, K.K.; Scheidel, W.; van Der Velde, Y.; Bierkens, M.F.P.; Wassen, M.J.; Dekker, S.C. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 2014, 18, 5025–5040. [Google Scholar] [CrossRef]
- Pastore, C.L.; Green, M.B.; Bain, D.J.; Munoz-Hernandez, A.; Vorosmarty, C.J.; Arrigo, J.; Brandt, S.; Duncan, J.M.; Greco, F.; Kim, H.; et al. Tapping environmental history to recreate America’s colonial hydrology. Environ. Sci. Technol. 2010, 44, 8798–8803. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M. Tracking evolution of urban biogeochemical cycles: Past, present, and future. Biogeochemistry 2014, 121, 1–21. [Google Scholar] [CrossRef]
- Barles, S. Urban metabolism and river systems: An historical perspective—Paris and the Seine, 1790–1970. Hydrol. Earth Syst. Sci. 2007, 11, 1757–1769. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Deligne, C.; Billen, C. Estimates of early-industrial inputs of nutrients to river systems: Implication for coastal eutrophication. Sci. Total Environ. 1999, 243, 43–52. [Google Scholar] [CrossRef]
- Tarr, J.A. The metabolism of the industrial city—The case of Pittsburgh. J. Urban Hist. 2002, 28, 511–545. [Google Scholar] [CrossRef]
- Melosi, M.V. The Sanitary City: Urban Infrastructure in America from Colonial Times to the Present; Johns Hopkins University Press: Baltimore, MD, USA, 2000. [Google Scholar]
- Pincetl, S. From the sanitary city to the sustainable city: Challenges to institutionalising biogenic (nature’s services) infrastructure. Local Environ. 2010, 15, 43–58. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Buckley, G.L.; Kaushal, S.S.; Williams, Y. Social-ecological science in the humane metropolis. Urban Ecosyst. 2011, 14, 319–339. [Google Scholar] [CrossRef]
- Childers, D.L.; Pickett, S.T.A.; Grove, J.M.; Ogden, L.; Whitmer, A. Advancing urban sustainability theory and action: Challenges and opportunities. Landsc. Urban Plan. 2014, 125, 320–328. [Google Scholar] [CrossRef]
- Hager, G.W.; Belt, K.T.; Stack, W.; Burgess, K.; Grove, J.M.; Caplan, B.; Hardcastle, M.; Shelley, D.; Pickett, S.T.A.; Groffman, P.M. Socioecological revitalization of an urban watershed. Front. Ecol. Environ. 2013, 11, 28–36. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl. 2008, 18, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.S.; Palmer, M.A.; Richardson, D.C.; Filoso, S.; Bernhardt, E.S.; Bledsoe, B.P.; Doyle, M.W.; Groffman, P.M.; Hassett, B.A.; Kaushal, S.S.; et al. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ. 2008, 6, 529–538. [Google Scholar] [CrossRef]
- Collins, K.A.; Lawrence, T.J.; Stander, E.K.; Jontos, R.J.; Kaushal, S.S.; Newcomer, T.A.; Grimm, N.B.; Ekberg, M.L.C. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis. Ecol. Eng. 2010, 36, 1507–1519. [Google Scholar] [CrossRef]
- Passeport, E.; Vidon, P.; Forshay, K.J.; Harris, L.; Kaushal, S.S.; Kellogg, D.Q.; Lazar, J.; Mayer, P.; Stander, E.K. Ecological engineering practices for the reduction of excess nitrogen in human-influenced landscapes: A guide for watershed managers. Environ. Manag. 2013, 51, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, M. Global analysis of river systems: From earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 1935–1955. [Google Scholar] [CrossRef] [PubMed]
- Vorosmarty, C.J.; Pahl-Wostl, C.; Bunn, S.E.; Lawford, R. Global water, the Anthropocene and the transformation of a science. Curr. Opin. Environ. Sustain. 2013, 5, 539–550. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T. Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 2004, 7, 393–403. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Band, L.A.; Walsh, C.; Berke, P. Understanding, managing and minimizing urban impacts of surface water nitrogen loading. Annu. Rev. Conserv. Environ. 2008, 1134, 61–96. [Google Scholar] [CrossRef] [PubMed]
- Leopold, L.B. Hydrology for Urban Land Planning: A Guidebook on the Hydrologic Effects of Urban Land Use; US Government Printing Office: Washington, DC, USA, 1968. [Google Scholar]
- Wolman, M.G.; Schick, A.P. Effects of construction on fluvial sediment urban and suburban areas of Maryland. Water Resour. Res. 1967, 3, 451–464. [Google Scholar] [CrossRef]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A. River restoration: The fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl. 2011, 21, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.X.; Dillard, N.D.; Grimm, N.B. Urban nitrogen biogeochemistry: Status and processes in green retention basins. Biogeochemistry 2004, 71, 177–196. [Google Scholar] [CrossRef]
- Grimm, N.B.; Sheibley, R.W.; Crenshaw, C.L.; Dahm, C.N.; Roach, W.J.; Zeglin, L.H. N retention and transformation in urban streams. J. N. Am. Benthol. Soc. 2005, 24, 626–642. [Google Scholar] [CrossRef]
- Wenger, S.J.; Roy, A.H.; Jackson, C.R.; Bernhardt, E.S.; Carter, T.L.; Filoso, S.; Gibson, C.A.; Hession, W.C.; Kaushal, S.S.; Marti, E.; et al. Twenty-six key research questions in urban stream ecology: An assessment of the state of the science. J. N. Am. Benthol. Soc. 2009, 28, 1080–1098. [Google Scholar] [CrossRef]
- Wild, T.C.; Bernet, J.F.; Westling, E.L.; Lerner, D.N. Deculverting: Reviewing the evidence on the “daylighting” and restoration of culverted rivers. Water Environ. J. 2011, 25, 412–421. [Google Scholar] [CrossRef]
- Elmore, A.J.; Kaushal, S.S. Disappearing headwaters: Patterns of stream burial due to urbanization. Front. Ecol. Environ. 2008, 6, 308–312. [Google Scholar] [CrossRef]
- Pennino, M.J.; Kaushal, S.S.; Beaulieu, J.J.; Mayer, P.M.; Arango, C.P. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: Implications for watershed nitrogen and carbon fluxes. Biogeochemistry 2014, 121, 247–269. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Broadhead, A.T.; Horn, R.; Lerner, D.N. Captured streams and springs in combined sewers: A review of the evidence, consequences and opportunities. Water Res. 2013, 47, 4752–4766. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.D.; McDowell, W.H.; Helton, A.M.; Daley, M.L. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry 2014, 121, 271–286. [Google Scholar] [CrossRef]
- Roy, A.H.; Dybas, A.L.; Fritz, K.M.; Lubbers, H.R. Urbanization affects the extent and hydrologic permanence of headwater streams in a Midwestern US metropolitan area. J. N. Am. Benthol. Soc. 2009, 28, 911–928. [Google Scholar] [CrossRef]
- Jones, D.K.; Baker, M.E.; Miller, A.J.; Jarnagin, S.T.; Hogan, D.M. Tracking geomorphic signatures of watershed suburbanization with multitemporal Lidar. Geomorphology 2014, 219, 42–52. [Google Scholar] [CrossRef]
- Hope, A.J.; McDowell, W.H.; Wollheim, W.M. Ecosystem metabolism and nutrient uptake in an urban, piped headwater stream. Biogeochemistry 2014, 121, 167–187. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; Mayer, P.M.; Kaushal, S.S.; Pennino, M.J.; Arango, C.P.; Balz, D.A.; Canfield, T.J.; Elonen, C.M.; Fritz, K.M.; Hill, B.H.; et al. Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention. Biogeochemistry 2014, 121, 107–126. [Google Scholar] [CrossRef]
- Johnson, T.A.N.; Kaushal, S.S.; Mayer, P.M.; Grese, M.M. Effects of stormwater management and stream restoration on watershed nitrogen retention. Biogeochemistry 2014, 121, 81–106. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Delaney-Newcomb, K.; Findlay, S.E.G.; Newcomer, T.A.; Duan, S.W.; Pennino, M.J.; Sivirichi, G.M.; Sides-Raley, A.M.; Walbridge, M.R.; Belt, K.T. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 2014, 121, 23–44. [Google Scholar] [CrossRef]
- Ramirez, A.; Rosas, K.G.; Lugo, A.E.; Ramos-Gonzalez, O.M. Spatio-temporal variation in stream water chemistry in a tropical urban watershed. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Belt, K.T.; Stack, W.P.; Pouyat, R.V.; Burgess, K.; Groffman, P.M.; Frost, W.H.; Kaushal, S.S.; Hager, G. Ultra-urban baseflow and stormflow concentrations and fluxes in a watershed undergoing watershed restoration (WS263). Proc. Water Environ. Fed. 2012, 15, 262–276. [Google Scholar] [CrossRef]
- Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R.V. A distinct urban biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Lewis, W.M.; McCutchan, J.H. Land use change and nitrogen enrichment of a Rocky Mountain watershed. Ecol. Appl. 2006, 16, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Bain, D.J.; Green, M.B.; Campbell, J.L.; Chamblee, J.F.; Chaoka, S.; Fraterrigo, J.M.; Kaushal, S.S.; Martin, S.L.; Jordan, T.E.; Parolari, A.J.; et al. Legacy effects in material flux: Structural catchment changes predate long-term studies. Bioscience 2012, 62, 575–584. [Google Scholar]
- McDowell, W.H. Hurricanes, people, and riparian zones: Controls on nutrient losses from forested Caribbean watersheds. For. Ecol. Manag. 2001, 154, 443–451. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kuhnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C.; et al. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef]
- Steele, M.K.; Heffernan, J.B.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, J.M.; Hall, S.; Hobbie, S.E.; Larson, K.; Morse, J.L.; et al. Convergent surface water distributions in US cities. Ecosystems 2014, 17, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Steele, M.K.; Heffernan, J.B. Morphological characteristics of urban water bodies: Mechanisms of change and implications for ecosystem function. Ecol. Appl. 2014, 24, 1070–1084. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. On the Origin of Species; London John Murray: London, UK, 1859. [Google Scholar]
- Howe, A.J. The Geology of Building Stones; Edward Arnold: London, UK, 1910. [Google Scholar]
- Lofrano, G.; Carotenuto, M.; Maffettone, R.; Todaro, P.; Sammataro, S.; Kalavrouziotis, I.K. Water Collection and Distribution Systems in the Palermo Plain during the Middle Ages. Water 2013, 5, 1662–1676. [Google Scholar] [CrossRef]
- Dang, X.H.; Webber, M.; Chen, D.; Wang, M.Y. Evolution of water management in Shanxi and Shaanxi provinces since the Ming and Qing dynasties of China. Water 2013, 5, 643–658. [Google Scholar] [CrossRef]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of water cisterns: Legacies and lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef]
- Herz, R.K.; Lipkow, A. Life cycle assessment of water mains and sewers. Water Supply 2002, 2, 51–58. [Google Scholar]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. Bioscience 2003, 53, 1169–1179. [Google Scholar] [CrossRef]
- Hopkins, K.G.; Bain, D.J.; Copeland, E.M. Reconstruction of a century of landscape modification and hydrologic change in a small urban watershed in Pittsburgh, PA. Landsc. Ecol. 2014, 29, 413–424. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Raciti, S.M.; Groffman, P.M.; Jenkins, J.C.; Pouyat, R.V.; Pickett, S.T.A.; Cadenasso, M.L.; Fahey, T.J. Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems 2011, 14, 287–297. [Google Scholar] [CrossRef]
- Grove, J.M.; Locke, D.H.; O’Neil-Dunne, J.P.M. An ecology of prestige in New York City: Examining the relationships among population density, socio-economic status, group identity, and residential canopy cover. Environ. Manag. 2014, 54, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Pouyat, R.; Russell-Anem, J.; Yesilonis, I.; Groffman, P. Soil Carbon in Urban Forest Ecosystems. In The Potential for US Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect, 1st ed.; Kimble, J., Heath, L., Birdsey, R., Lal, R., Eds.; CRC Press: New York, NY, USA, 2003. [Google Scholar]
- Belt, K.T.; Hohn, C.; Gbakima, A.; Higgins, J.A. Identification of culturable stream water bacteria from urban, agricultural, and forested watersheds using 16S rRNA gene sequencing. J. Water Health 2007, 5, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Drury, B.; Rosi-Marshall, E.; Kelly, J.J. Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl. Environ. Microbiol. 2013, 79, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Fincher, L.M.; Parker, C.D.; Chauret, C.P. Occurrence and antibiotic resistance of escherichia coli O157:H7 in a watershed in north-central Indiana. J. Environ. Qual. 2009, 38, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.O.; Wollheim, W.M.; Mulukutla, G.K.; Mineau, M.M. Characterizing storm-event nitrate fluxes in a fifth order suburbanizing watershed using in situ sensors. Environ. Sci. Technol. 2014, 48, 7756–7765. [Google Scholar] [CrossRef] [PubMed]
- Morse, N.B.; Pellissier, P.A.; Cianciola, E.N.; Brereton, R.L.; Sullivan, M.M.; Shonka, N.K.; Wheeler, T.B.; McDowell, W.H. Novel ecosystems in the Anthropocene: A revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Garcia-Fresca, B.; Sharp, J.M. Hydrogeologic considerations of urban development: Urban-induced recharge. Hum. Geol. Agents Geol. Soc. Am. 2005, 16, 123–136. [Google Scholar]
- Baltimore Ecosystem Study, BES Urban Lexicon, Sanitary City. Available online: http://besurbanlexicon.blogspot.com/search/label/Sanitary%20City (accessed on 13 March 2015).
- Tarr, J.A.; Mccurley, J.; Mcmichael, F.C.; Yosie, T. Water and wastes, a retrospective assessment of wastewater technology in the United-States, 1800–1932. Technol. Cult. 1984, 25, 226–263. [Google Scholar] [CrossRef] [PubMed]
- Lookingbill, T.R.; Kaushal, S.S.; Elmore, A.J.; Gardner, R.; Eshleman, K.N.; Hilderbrand, R.H.; Morgan, R.P.; Boynton, W.R.; Palmer, M.A.; Dennison, W.C. Altered ecological flows blur boundaries in urbanizing watersheds. Ecol. Soc. 2009, 14, 10. [Google Scholar]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Wolman, A. The metabolism of cities. Sci. Am. 1965, 213, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, D.T. A monument to defective administration? The London Commissions of Sewers in the early nineteenth century. Urban Hist. 1999, 26, 349–372. [Google Scholar] [CrossRef]
- Ruhl, H.A.; Rybicki, N.B. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat. Proc. Natl. Acad. Sci. USA 2010, 107, 16566–16570. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.; Luh, J.; Bartram, J. Sanitation: A global estimate of sewerage connections without treatment and the resulting impact on MDG progress. Environ. Sci. Technol. 2013, 47, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Boynton, W.R.; Hagy, J.D.; Cornwell, J.C.; Kemp, W.M.; Greene, S.M.; Owens, M.S.; Baker, J.E.; Larsen, R.K. Nutrient budgets and management actions in the Patuxent River Estuary, Maryland. Estuaries Coasts 2008, 31, 623–651. [Google Scholar] [CrossRef]
- McDonald, R.I.; Weber, K.; Padowski, J.; Florke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Elliott, E.M.; Shields, C.A.; Kendall, C. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Janke, B.D.; Finlay, J.C.; Hobbie, S.E.; Baker, L.A.; Sterner, R.W.; Nidzgorski, D.; Wilson, B.N. Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. Biogeochemistry 2014, 121, 209–228. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Shields, C.A.; Morgan, R.P.; Palmer, M.A.; Belt, K.T.; Swan, C.M.; Findlay, S.E.G.; Fisher, G.T. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ. Sci. Technol. 2008, 42, 5872–5878. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Kalin, L.; Kuang, W.H.; Tian, H.Q. Individual and combined effects of land use/cover and climate change on wolf bay watershed streamflow in southern Alabama. Hydrol. Process. 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Mayer, P.M.; Vidon, P.G.; Smith, R.M.; Pennino, M.J.; Newcomer, T.A.; Duan, S.W.; Welty, C.; Belt, K.T. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: A review with management implications. J. Am. Water Resour. Assoc. 2014, 50, 585–614. [Google Scholar] [CrossRef]
- Chen, N.W.; Wu, J.Z.; Hong, H.S. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China. Sci. Total Environ. 2012, 431, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Utz, R.M.; Eshleman, K.N.; Hilderbrand, R.H. Variation in physicochemical responses to urbanization in streams between two mid-Atlantic physiographic regions. Ecol. Appl. 2011, 21, 402–415. [Google Scholar] [CrossRef] [PubMed]
- King, R.S.; Baker, M.E. An alternative view of ecological community thresholds and appropriate analyses for their detection: Comment. Ecol. Appl. 2011, 21, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological restoration of streams and rivers: Shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247–269. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Palmer, M.A.; Allan, J.D.; Alexander, G.; Barnas, K.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad-Shah, J.; et al. Ecology—Synthesizing US river restoration efforts. Science 2005, 308, 636–637. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Ambrose, R.F.; Poff, N.L. Ecological theory and community restoration ecology. Restor. Ecol. 1997, 5, 291–300. [Google Scholar] [CrossRef]
- Lake, P.S.; Bond, N.; Reich, P. Linking ecological theory with stream restoration. Freshw. Biol. 2007, 52, 597–615. [Google Scholar] [CrossRef]
- Lepori, F.; Palm, D.; Malmqvist, B. Effects of stream restoration on ecosystem functioning: Detritus retentiveness and decomposition. J. Appl. Ecol. 2005, 42, 228–238. [Google Scholar] [CrossRef]
- Newcomer, T.A.; Kaushal, S.S.; Mayer, P.M.; Shields, A.R.; Canuel, E.A.; Groffman, P.M.; Gold, A.J. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol. Monogr. 2012, 82, 449–466. [Google Scholar] [CrossRef]
- Bukaveckas, P.A. Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ. Sci. Technol. 2007, 41, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Sivirichi, G.M.; Kaushal, S.S.; Mayer, P.M.; Welty, C.; Belt, K.T.; Newcomer, T.A.; Newcomb, K.D.; Grese, M.M. Longitudinal variability in streamwater chemistry and carbon and nitrogen fluxes in restored and degraded urban stream networks. J. Environ. Monit. 2011, 13, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Filoso, S.; Palmer, M.A. Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. Ecol. Appl. 2011, 21, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.K.; Tuttle, A.K.; Jennings, G.D.; Gardner, A. Influence of restoration age and riparian vegetation on reach-scale nutrient retention in restored urban streams. J. Am. Water Resour. Assoc. 2014, 50, 626–638. [Google Scholar] [CrossRef]
- Cun, C.; Vilagines, R. Time series analysis on chlorides, nitrates, ammonium and dissolved oxygen concentrations in the Seine River near Paris. Sci. Total Environ. 1997, 208, 59–69. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Groffman, P.M.; Likens, G.E.; Belt, K.T.; Stack, W.P.; Kelly, V.R.; Band, L.E.; Fisher, G.T. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.L.; Potter, J.D.; McDowell, W.H. Salinization of urbanizing New Hampshire streams and groundwater: Effects of road salt and hydrologic variability. J. N. Am. Benthol. Soc. 2009, 28, 929–940. [Google Scholar] [CrossRef]
- Cooper, C.A.; Mayer, P.M.; Faulkner, B.R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 2014, 121, 149–166. [Google Scholar] [CrossRef]
- Corsi, S.R.; de Cicco, L.A.; Lutz, M.A.; Hirsch, R.M. River chloride trends in snow-affected urban watersheds: Increasing concentrations outpace urban growth rate and are common among all seasons. Sci. Total Environ. 2015, 508, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Freney, J.R.; Martinelli, L.A.; Cai, Z.C.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.A.; Oh, N.H.; Turner, R.E.; Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Likens, G.E.; Utz, R.M.; Pace, M.L.; Grese, M.; Yepsen, M. Increased river alkalinization in the eastern US. Environ. Sci. Technol. 2013, 47, 10302–10311. [Google Scholar] [PubMed]
- Stets, E.G.; Kelly, V.J.; Crawford, C.G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 2014, 488, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.P.; McDowell, W.H.; Gardner, K.H.; Hartmann, J. Chemistry of the heavily urbanized Bagmati River system in Kathmandu Valley, Nepal: Export of organic matter, nutrients, major ions, silica, and metals. Environ. Earth Sci. 2014, 71, 911–922. [Google Scholar] [CrossRef]
- Connor, N.P.; Sarraino, S.; Frantz, D.E.; Bushaw-Newton, K.; MacAvoy, S.E. Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Appl. Geochem. 2014, 47, 209–216. [Google Scholar] [CrossRef]
- Davies, P.J.; Wright, I.A.; Jonasson, O.J.; Findlay, S.J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 2010, 7, 233–241. [Google Scholar] [CrossRef]
- Likens, G.E.; Bormann, F.H.; Johnson, N.M. Acid rain. Environment 1972, 14, 33–40. [Google Scholar] [CrossRef]
- Wang, K.; Nelsen, D.E.; Nixon, W.A. Damaging effects of deicing chemicals on concrete materials. Cem. Concr. Compos. 2006, 28, 173–188. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Russell-Anelli, J.; Neerchal, N.K. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci. Soc. Am. J. 2007, 71, 1010–1019. [Google Scholar] [CrossRef]
- Prasad, M.B.K.; Kaushal, S.S.; Murtugudde, R. Long-term pCO2 dynamics in rivers in the Chesapeake Bay watershed. Appl. Geochem. 2013, 31, 209–215. [Google Scholar] [CrossRef]
- Barnes, R.T.; Raymond, P.A. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem. Geol. 2009, 266, 318–327. [Google Scholar] [CrossRef]
- Li, H.B.; Yu, S.; Li, G.L.; Deng, H. Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 2012, 88, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.H.; Shi, Y.L.; Groffman, P.M.; Schlesinger, W.H.; Zhu, Y.G. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proc. Natl. Acad. Sci. USA 2013, 110, 2052–2057. [Google Scholar] [CrossRef] [PubMed]
- Maal-Bared, R.; Bartlett, K.H.; Bowie, W.R.; Hall, E.R. Phenotypic antibiotic resistance of escherichia coli and e. Coli o157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. Sci. Total Environ. 2013, 443, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, K.K.; Sivakumar, S.; Sampath, S.; Shanmugam, G.; Sundaresan, U.; Ramaswamy, B.R. Paraben resistance in bacteria from sewage treatment plant effluents in India. Water Sci. Technol. 2013, 68, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Rosi-Marshall, E.J.; Royer, T.V. Pharmaceutical compounds and ecosystem function: An emerging research challenge for aquatic ecologists. Ecosystems 2012, 15, 867–880. [Google Scholar] [CrossRef]
- Deo, R.P.; Halden, R.U. Pharmaceuticals in the built and natural water environment of the United States. Water 2013, 5, 1346–1365. [Google Scholar] [CrossRef]
- Larson, E.K.; Grimm, N.B. Small-scale and extensive hydrogeomorphic modification and water redistribution in a desert city and implications for regional nitrogen removal. Urban Ecosyst. 2012, 15, 71–85. [Google Scholar] [CrossRef]
- Xiao, M.; Lin, Y.L.; Han, J.; Zhang, G.Q. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- Blake, N.M. Water for the Cities: A History of the Urban Water Supply Problem in the United States; Syracuse University Press: New York, NY, USA, 1956. [Google Scholar]
- Wu, J.G. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Webb, R.H.; Betancourt, J.L.; Johnson, R.R.; Turner, R.M. Requiem for the Santa Cruz: An Environmental History of an Arizona River; The University of Arizona Press: Tucson, AZ, USA, 2014. [Google Scholar]
- Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.J. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities. Water Resour. Manag. 2015, 29, 1979–1993. [Google Scholar]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P. Implementing Pollution Source Control-Learning from the Innovation Process in English and Welsh Water Companies. Water Resour. Manag. 2013, 27, 75–94. [Google Scholar] [CrossRef]
- Araujo, L.; Ramos, H.; Coelho, S. Pressure control for leakage minimization in water distribution systems management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Walski, T.; Bezts, W.; Posluszny, E.T.; Weir, M.; Whitman, B.E. Modeling leakage reduction through pressure control. J. Am. Water Works Assoc. 2006, 98, 147–155. [Google Scholar]
- Liberatore, S.; Sechi, G.M. Location and Calibration of Valves in Water Distribution Networks Using a Scatter-Search Meta-heuristic Approach. Water Resour. Manag. 2009, 23, 1479–1495. [Google Scholar] [CrossRef]
- Fecarotta, O.; Arico, C; Carravetta, A.; Martino, R.; Ramos, H.M. Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resour. Manag. 2015, 29, 699–714. [Google Scholar] [CrossRef] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushal, S.S.; McDowell, W.H.; Wollheim, W.M.; Johnson, T.A.N.; Mayer, P.M.; Belt, K.T.; Pennino, M.J. Urban Evolution: The Role of Water. Water 2015, 7, 4063-4087. https://doi.org/10.3390/w7084063
Kaushal SS, McDowell WH, Wollheim WM, Johnson TAN, Mayer PM, Belt KT, Pennino MJ. Urban Evolution: The Role of Water. Water. 2015; 7(8):4063-4087. https://doi.org/10.3390/w7084063
Chicago/Turabian StyleKaushal, Sujay S., William H. McDowell, Wilfred M. Wollheim, Tamara A. Newcomer Johnson, Paul M. Mayer, Kenneth T. Belt, and Michael J. Pennino. 2015. "Urban Evolution: The Role of Water" Water 7, no. 8: 4063-4087. https://doi.org/10.3390/w7084063
APA StyleKaushal, S. S., McDowell, W. H., Wollheim, W. M., Johnson, T. A. N., Mayer, P. M., Belt, K. T., & Pennino, M. J. (2015). Urban Evolution: The Role of Water. Water, 7(8), 4063-4087. https://doi.org/10.3390/w7084063