Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Influent
Parameter | Units | Average | n |
---|---|---|---|
Chemical Oxygen Demand | mg·L−1 | 723.2 ± 320.3 | 90 |
Suspended Solids | mg·L−1 | 126.5 ± 28.5 | 36 |
Oils and Grease | mg·L−1 | 30.8 ± 14.1 | 36 |
Total Phosphorous—P | mg·L−1 | 6.6 ± 2 | 35 |
Total Kjeldahl nitrogen—TKN | mg·L−1 | 16.2 ± 6.5 | 36 |
Dissolved Oxygen | mg·L−1 | 6.8 ± 0.4 | 36 |
Temperature | °C | 22.8 ± 4.1 | 233 |
pH | -- | 7.1 ± 0.3 | 233 |
Fecal Coliforms | MPN/100 mL | 9.67 × 108 ± 1.89 × 108 | 36 |
Helminth eggs | egg·g−1 | 2.4 ± 1.4 | 90 |
2.2. Upflow Anaerobic Sludge Blanket (UASB) Reactors
2.3. Inoculum
2.4. Helminth Eggs
2.5. Helminth Egg Counting
2.6. Physicochemical and Bacteriological Analysis
2.7. UASB Operational Conditions
Experiment | SB Height Variation | SBp | Upflow Velocities |
---|---|---|---|
(m) | (%) | (m·h−1) | |
1 | 0.30 to 0.40 | 19 to 25 | 0.09, 0.17, 0.23, 0.34 and 0.68 |
2 | 0.50 to 0.60 | 31 to 38 | 0.09, 0.11, 0.17, 0.23, 0.34 and 0.68 |
3 | 0.60 to 0.70 | 38 to 44 | 0.09, 0.14, 0.17, 0.23, 0.34, 0.45 and 0.68 |
4 (blank experiment) | 0 | 0 | 0.09, 0.11, 0.14, 0.17, 0.23, 0.34, and 0.68 |
3. Results and Discussion
Experiment | Upflow Velocity (m·h−1) | Temperature (°C) | Helminth Egg removal (%) | COD (%) |
---|---|---|---|---|
Experiment 1 | 0.09 | 24.6 ± 2.4 | 93 ± 5 | 71.9 ± 7.1 |
0.17 | 28.6 ± 2 | 77 ± 4 | 66.4 ± 8.2 | |
0.23 | 25.6 ± 3.5 | 61 ± 7 | 63.1 ± 8.6 | |
0.34 | 23 ± 3.3 | 52 ± 9 | 60.3 ± 6.4 | |
0.68 | 26.5 ± 2 | 26 ± 7 | 45.4 ± 6.3 | |
Experiment 2 | 0.09 | 22 ± 6 | 91 ± 3 | 71.6 ± 10.3 |
0.11 | 22.5 ± 5.3 | 75 ± 10 | 71.6 ± 2.2 | |
0.17 | 24.2 ± 1.5 | 71 ± 11 | 66.2 ± 12.7 | |
0.23 | 23.2 ± 3.1 | 61 ± 10 | 65 ± 7.4 | |
0.34 | 26.1 ± 0.5 | 51 ± 7 | 63.7 ± 15.1 | |
0.68 | 25.5 ± 3 | 30 ± 15 | 63 ± 19.1 | |
Experiment 3 | 0.09 | 23.3 ± 0.9 | 55 ± 1 | 80.3 ± 2.4 |
0.14 | 21.4 ± 2.9 | 53 ± 5 | 80.2 ± 15.5 | |
0.17 | 27.1 ± 0.5 | 56 ± 7 | 80.2 ± 8.1 | |
0.23 | 23.3 ± 5.7 | 56 ± 8 | 79.3 ± 0.8 | |
0.34 | 22.1 ± 4.2 | 55 ± 11 | 69.5 ± 14.8 | |
0.45 | 28.5 ± 2 | 46 ± 8 | 60.5 ± 0.4 | |
0.68 | 26.2 ± 2.3 | 34 ± 8 | 45.3 ± 3.4 | |
Experiment 4 | 0.09 | 16.9 ± 1 | 66 ± 3 | 77.6 ± 2.4 |
0.11 | 16.9 ± 0.5 | 48 ± 3 | 44.8 ± 9.8 | |
0.14 | 17.3 ± 1 | 57 ± 3 | 84 ± 1.9 | |
0.17 | 17.3 ± 2 | 44 ± 3 | 50.7 ± 5.7 | |
0.23 | 16.9 ± 0.8 | 53 ± 3 | 64.9 ± 5 | |
0.34 | 18.1 ± 1 | 52 ± 10 | 71.1 ± 3.7 | |
0.68 | 17.7 ± 1 | 54 ± 8 | 55.2 ± 7.3 |
3.1. Experiment 1: Upflow Velocity between 0.09 and 0.68 m·h−1 and Sludge Bed Height between 0.30 and 0.40 m (19% to 25% of the Total Reactor Height)
3.2. Experiment 2: Upflow Velocity between 0.09 and 0.68 m·h−1 and Sludge Bed Height between 0.50 and 0.60 m (31% to 38% of the Total Reactor Height)
3.3. Experiment 3: Upflow Velocity between 0.09 and 0.68 m·h−1 and Sludge Bed Height between 0.60 and 0.70 m (38% to 44% of the Total Reactor Height)
3.4. Experiment 4: Blank Experiment Using Upflow Velocity between 0.09 and 0.68 m·h−1 and No Sludge Bed
3.5. Microscopic Observations in the Effluent
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jimenez, B. Helminth ova removal from wastewater for agriculture and aquaculture reuse. Water Sci. Technol. 2007, 55, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.; Jiménez, B. Evaluation of the who helminth eggs criteria using a qmra approach for the safe reuse of wastewater and sludge in developing countries. Water Sci. Technol. 2011, 63, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, B. Helminthes (worms) eggs control in wastewater and sludge. In Proceedings of the International Symposium on New Directions in Urban Water Management, Paris, France, 12–14 September 2007; pp. 12–14.
- Maya, C.; Torner-Morales, F.; Lucario, E.; Hernández, E.; Jiménez, B. Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, ph and dryness. Water Res. 2012, 46, 4770–4782. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, U.J.; Cifuentes, E.; Bennett, S.; Quigley, M.; Ruiz-Palacios, G. The risk of enteric infections associated with wastewater reuse: The effect of season and degree of storage of wastewater. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.J.; Chico, M.E.; Sandoval, C.; Espinel, I.; Guevara, A.; Kennedy, M.W.; Urban, J.F.; Griffin, G.E.; Nutman, T.B. Human infection with ascaris lumbricoides is associated with a polarized cytokine response. J. Infect. Dis. 2000, 182, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Cruz Toribio, L.I.F. Gastrointestinal Helminthiasis in Livestock Herding Dogs Puno Communities; Universidad Nacional Mayor de San Marcos: Lima-Peru, Spain, 2010. [Google Scholar]
- World Health Organization (WHO). Who Guidelines for the Safe Use of Wastewater, Excreta and Greywater Organization; World Health Organization: Geneva, Switzerland, 2006; Volume 2. [Google Scholar]
- De Bonilla, L.C. El problema de las parasitosis intestinales en venezuela. Investig. Clín. 1990, 31, 1–2. [Google Scholar]
- Santiso, R. Effects of chronic parasitosis on women’s health. Int. J. Gynecol. Obstet. 1997, 58, 129–136. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.; Drechsel, P.; Bahri, A.; Minhas, P. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef]
- Keller, R.; Passamani-Franca, R.; Cassini, S.; Gonçalves, F. Disinfection of sludge using lime stabilisation and pasteurisation in a small wastewater treatment plant. Water Sci. Technol. 2004, 50, 13–17. [Google Scholar] [PubMed]
- Borrely, S.; Cruz, A.; del Mastro, N.; Sampa, M.; Somessari, E. Radiation processing of sewage and sludge. A review. Prog. Nucl. Energy 1998, 33, 3–21. [Google Scholar] [CrossRef]
- De Souza, G.S.; Rodrigues, L.A.; de Oliveira, W.J.; Chernicharo, C.A.; Guimarães, M.P.; Massara, C.L.; Grossi, P.A. Disinfection of domestic effluents by gamma radiation: Effects on the inactivation of ascaris lumbricoides eggs. Water Res. 2011, 45, 5523–5528. [Google Scholar] [CrossRef] [PubMed]
- Gantzer, C.; Gaspard, P.; Galvez, L.; Huyard, A.; Dumouthier, N.; Schwartzbrod, J. Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Res. 2001, 35, 3763–3770. [Google Scholar] [CrossRef] [PubMed]
- Mara, D. Domestic Wastewater Treatment in Developing Countries; Earthscan: London, UK, 2003. [Google Scholar]
- Von Sperling, M.; Chernicharo, C.; Andreoli, C.V.; Fernandes, F. (Eds.) Biological Wastewater Treatment in Warm Climate Regions; IWA: London, UK, 2005; Volume 2.
- Jimenez, B.; Maya-Rendon, C.; Salgado-Velzquez, G. The elimination of helminth ova, faecal coliforms, salmonella and protozoan cysts by various physicochemical processes in wastewater and sludge. Water Sci. Technol. 2001, 43, 179–182. [Google Scholar] [PubMed]
- Koné, D.; Cofie, O.; Zurbrügg, C.; Gallizzi, K.; Moser, D.; Drescher, S.; Strauss, M. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Res. 2007, 41, 4397–4402. [Google Scholar] [CrossRef] [PubMed]
- Cabaret, J.; Geerts, S.; Madeline, M.; Ballandonne, C.; Barbier, D. The use of urban sewage sludge on pastures: The cysticercosis threat. Vet. Res. 2002, 33, 575–597. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture: Reports of a Who Scientific Group; Technical Report Series no. 778; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Brownell, S.A.; Nelson, K.L. Inactivation of single-celled ascaris suum eggs by low-pressure uv radiation. Appl. Environ. Microbiol. 2006, 72, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Von Sperling, M. Comparison among the most frequently used systems for wastewater treatment in developing countries. Water Sci. Technol. 1996, 33, 59–72. [Google Scholar] [CrossRef]
- Von Sperling, M.; Chernicharo, C.; Soares, A.; Zerbini, A. Coliform and helminth egg removal in a combined uasb reactor-baffled pond system in brazil: Performance evaluation and mathematical modelling. Water Sci. Technol. 2002, 45, 237. [Google Scholar] [PubMed]
- Chernicharo, C. Post-treatment options for the anaerobic treatment of domestic wastewater. Rev. Environ. Sci. Biotechnol. 2006, 5, 73–92. [Google Scholar] [CrossRef]
- Von Sperling, M.; Chernicharo, C.; Soares, A.; Zerbini, A. Evaluation and modelling of helminth egg removal in baffled and unbaffled ponds treating anaerobic effluent. Water Sci. Technol. 2003, 48, 113–120. [Google Scholar] [PubMed]
- Jorsaraei, A.; Gougol, M.; van Lier, J.B. A cost effective method for decentralized sewage treatment. Process Saf. Environ. Prot. 2013, 92, 815–821. [Google Scholar] [CrossRef]
- Uemura, S.; Harada, H. Treatment of sewage by a uasb reactor under moderate to low temperature conditions. Bioresour. Technol. 2000, 72, 275–282. [Google Scholar] [CrossRef]
- Van Lier, J.B.; Tilche, A.; Ahring, B.K.; Macarie, H.; Moletta, R.; Dohanyos, M.; Pol, L.W.; Lens, P.; Verstraete, W.; Management Committee of the IWA Anaerobic Digestion Specialised Group. New perspectives in anaerobic digestion. Water Sci. Technol. 2001, 43, 1–18. [Google Scholar] [PubMed]
- Van Lier, J.B.; Vashi, A.; van der Lubbe, J.; Heffernan, B.; Fang, H. (Eds.) Anaerobic Sewage Treatment Using Uasb Reactors: Engineering and Operational Aspects; Imperial College Press: London, UK, 2010.
- Mahmoud, N.; Zandvoort, M.; van Lier, J.; Zeeman, G. Development of sludge filterability test to assess the solids removal potential of a sludge bed. Bioresour. Technol. 2006, 97, 2383–2388. [Google Scholar] [CrossRef] [PubMed]
- Boes, J.; Helwigh, A. Animal models of intestinal nematode infections of humans. Parasitology 2000, 121, 97–111. [Google Scholar] [CrossRef]
- Yaya-Beas, R.E.; Zeeman, G.; van Lier, J.B. Helminth ova removal using uasb reactors at 4 °C. In Proceedings of the 3rd International Congress Smallwat 11, Seville, Spain, 26 April 2010.
- Yaya-Beas, R.E.; D’engremont, M.; Kujawa, K.; Zeeman, G.; van Lier, J.B. Filtration capacity of an anaerobic sludge bed for the removal of helminth eggs. Water Environ. J. submitted for publication. 2015. [Google Scholar]
- O’Lorcain, P.; Holland, C. The public health importance of ascaris lumbricoides. Parasitology 2000, 121, S51–S71. [Google Scholar] [CrossRef] [PubMed]
- Quilès, F.; Balandier, J.Y.; Capizzi-Banas, S. In situ characterisation of a microorganism surface by raman microspectroscopy: The shell of ascaris eggs. Anal. Bioanal. Chem. 2006, 386, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, D.G.; Araújo, F.B.; Molento, M.B.; DaMatta, R.A.; de Paula Santos, C. Kinetics of capture and infection of infective larvae of trichostrongylides and free-living nematodes panagrellus sp. By duddingtonia flagrans. Parasitol. Res. 2011, 109, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.S.; Suárez, J.; Cazapal-Monteiro, C.F.; Francisco, I.; López-Arellano, M.E.; Piñeiro, P.; Suárez, J.L.; Sánchez-Andrade, R.; Mendoza de Gives, P.; Paz-Silva, A. Trematodes enhance the development of the nematode-trapping fungus arthrobotrys (duddingtonia) flagran. Fungal Biol. 2013, 117, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Federica, S.M.; Alberto, F.L.; Emilia, I.L.; Carina, M.F.; Alfredo, S.C. Optimization of production of chlamydospores of the nematode-trapping fungus duddingtonia flagrans in solid culture media. Parasitol. Res. 2013, 112, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M. Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 2000, 120, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-López, R.H.; Esteves, I.; Finetti-Sialer, M.M.; Hirsch, P.R.; Ward, E.; Devonshire, J.; Hidalgo-Díaz, L. Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J. Nematol. 2013, 45, 1. [Google Scholar] [PubMed]
- Seyssiecq, I.; Ferrasse, J.-H.; Roche, N. State-of-the-art: Rheological characterisation of wastewater treatment sludge. Biochem. Eng. J. 2003, 16, 41–56. [Google Scholar] [CrossRef]
- Pevere, A.; Guibaud, G.; van Hullebusch, E.; Lens, P.; Baudu, M. Viscosity evolution of anaerobic granular sludge. Biochem. Eng. J. 2006, 27, 315–322. [Google Scholar] [CrossRef]
- Mori, M.; Seyssiecq, I.; Roche, N. Rheological measurements of sewage sludge for various solids concentrations and geometry. Process Biochem. 2006, 41, 1656–1662. [Google Scholar] [CrossRef]
- Johansen, A.; Nielsen, H.B.; Hansen, C.M.; Andreasen, C.; Carlsgart, J.; Hauggard-Nielsen, H.; Roepstorff, A. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso-and thermophilic conditions. Waste Manag. 2013, 33, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Seghezzo, L. Anaerobic Treatment of Domestic Wastewater in Subtropical Regions. Ph.D. Thesis, Wageningen Universiteit, Wageningen, The Netherlands, 2004. [Google Scholar]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J. Anaerobic treatment of concentrated black water in a uasb reactor at a short hrt. Water 2010, 2, 101–119. [Google Scholar] [CrossRef]
- Mendez, J.; Jimenez, B.; Barrios, J. Improved alkaline stabilization of municipal wastewater sludge. Water Sci. Technol. 2002, 46, 139–146. [Google Scholar] [PubMed]
- Jiménez, B. Treatment technology and standards for agricultural wastewater reuse: A case study in mexico. Irrig. Drain. 2005, 54, S23–S33. [Google Scholar] [CrossRef]
- Jiménez, B.; Drechsel, P.; Koné, D.; Bahri, A.; Raschid-Sally, L.; Qadir, M. Wastewater, sludge and excreta use in developing countries: An overview. In Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; Taylor & Francis: London, UK, 2010; pp. 3–29. [Google Scholar]
- Jiménez, B.; Mara, D.; Carr, R.; Brissaud, F. Wastewater treatment for pathogen removal and nutrient conservation: Suitable systems for use in developing countries. In Wastewater Irrigation and Health. Assessing and Mitigating Risk in Low-Income Countries; Drechsel, P., Scott, C.A., Raschid-Sally, L., Redwood, M., Bahri, A., Eds.; International Water Management Institute and International Development Research Centre (IDRC): London, UK, 2010; pp. 149–169. [Google Scholar]
- Chernicharo, C.; da Silva Cota, R.; Zerbini, A.; von Sperling, M. Post-treatment of anaerobic effluents in an overland flow system. Water Sci. Technol. 2001, 44, 229–236. [Google Scholar] [PubMed]
- Diawara, A.; Drake, L.J.; Suswillo, R.R.; Kihara, J.; Bundy, D.A.; Scott, M.E.; Halpenny, C.; Stothard, J.R.; Prichard, R.K. Assays to detect β-tubulin codon 200 polymorphism in trichuris trichiura and ascaris lumbricoides. PLoS Negl. Trop. Dis. 2009, 3, e397. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Dixon, R.; Ross, A. An in vitro test for assessing the viability of ascaris suum eggs exposed to various sewage treatment processes. Int. J. Parasitol. 1998, 28, 627–633. [Google Scholar] [CrossRef] [PubMed]
- De Victorica, J.; Galván, M. Preliminary testing of a rapid coupled methodology for quantitation/viability determination of helminth eggs in raw and treated wastewater. Water Res. 2003, 37, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Ayres, R.M.; Mara, D.D. Analysis of Wastewater for Use in Agriculture. A Laboratory Manual of Parasitological and Bacteriological Techniques; World Health Organization: Geneva, Switzerland, 1996; Volume 1. [Google Scholar]
- Bailenger, J. Mechanisms of parasitological concentration in coprology and their practical consequences. J. Am. Med. Technol. 1979, 41, 65–71. [Google Scholar]
- Bodı́k, I.; Herdová, B.; Drtil, M. The use of upflow anaerobic filter and ansbr for wastewater treatment at ambient temperature. Water Res. 2002, 36, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; p. 1220. [Google Scholar]
- Hach Company. Hach Water Analysis Handbook, 5th ed.; Hach Company: Loveland, CO, USA, 2008. [Google Scholar]
- Lettinga, G.; Pol, L.H.; Koster, I.; Wiegant, W.; de Zeeuw, W.; Rinzema, A.; Grin, P.; Roersma, R.; Hobma, S. High-rate anaerobic waste-water treatment using the uasb reactor under a wide range of temperature conditions. Biotechnol. Genet. Eng. Rev. 1984, 2, 253–284. [Google Scholar] [CrossRef]
- Abdelgadir, A.; Chen, X.; Liu, J.; Xie, X.; Zhang, J.; Zhang, K.; Wang, H.; Liu, N. Characteristics, process parameters, and inner components of anaerobic bioreactors. BioMed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, M.E.; Thamsborg, S.M.; Andersen, T.J.; Olsen, A.; Dalsgaard, A. Sedimentation of helminth eggs in water. Water Res. 2011, 45, 4651–4660. [Google Scholar] [CrossRef] [PubMed]
- Elmitwalli, T.A.; Zandvoort, M.H.; Zeeman, G.; Bruning, H.; Lettinga, G. Low temperature treatment of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactors. Water Sci. Technol. 1999, 39, 177–185. [Google Scholar] [CrossRef]
- Lew, B.; Tarre, S.; Belavski, M.; Green, M. UASB reactor for domestic wastewater treatment at low temperatures: A comparison between a classical uasb and hybrid uasb-filter reactor. Water Sci. Technol. 2004, 49, 295–301. [Google Scholar] [PubMed]
- Mahmoud, N. Anaerobic Pre-treatment of Sewage under Low Temperature (15 °C) Conditions in an Integrated UASB-Digester System; Agricultural Wageningen University: Wageningen, The Netherlands, 2002. [Google Scholar]
- Bolle, W.; van Breugel, J.; van Eybergen, G.; Kossen, N.; Zoetemeyer, R. Modeling the liquid flow in up-flow anaerobic sludge blanket reactors. Biotechnol. Bioeng. 1986, 28, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Ojha, C.; Singh, R. Flow distribution parameters in relation to flow resistance in an upflow anaerobic sludge blanket reactor system. J. Environ. Eng. 2002, 128, 196–200. [Google Scholar] [CrossRef]
- Jeison, D.; Chamy, R. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci. Technol. 1999, 40, 91–97. [Google Scholar] [CrossRef]
- Mahmoud, N.; Zeeman, G.; Gijzen, H.; Lettinga, G. Solids removal in upflow anaerobic reactors, a review. Bioresour. Technol. 2003, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Geng, Z.; Wang, Y. Expanded granular sludge bed (egsb) reactor treating actual domestic wastewater: Temperature influence. In Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 26–28 July 2013.
- Ozgun, H.; Dereli, R.K.; Ersahin, M.E.; Kinaci, C.; Spanjers, H.; van Lier, J.B. A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Sep. Purif. Technol. 2013, 118, 89–104. [Google Scholar] [CrossRef]
- Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 2006, 23, 650–665. [Google Scholar] [CrossRef]
- Zeeman, G.; Kujawa-Roeleveld, K. Anaerobic treatment of source-separated domestic wastewater. In Source Separation and Decentralization for Wastewater Treatment; Larsen, T.A., Udert, K.M., Lienert, J., Eds.; IWA: London, UK, 2013; pp. 307–319. [Google Scholar]
- Udert, K.M.; Lienert, J. Source Separation and Decentralization for Wastewater Management; IWA: London, UK, 2013. [Google Scholar]
- Kujawa-Roeleveld, K.; Zeeman, G. Anaerobic treatment in decentralised and source-separation-based sanitation concepts. Rev. Environ. Sci. Biotechnol. 2006, 5, 115–139. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaya-Beas, R.-E.; Ayala-Limaylla, C.; Kujawa-Roeleveld, K.; Van Lier, J.B.; Zeeman, G. Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions. Water 2015, 7, 2402-2421. https://doi.org/10.3390/w7052402
Yaya-Beas R-E, Ayala-Limaylla C, Kujawa-Roeleveld K, Van Lier JB, Zeeman G. Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions. Water. 2015; 7(5):2402-2421. https://doi.org/10.3390/w7052402
Chicago/Turabian StyleYaya-Beas, Rosa-Elena, Christian Ayala-Limaylla, Katarzyna Kujawa-Roeleveld, Jules B. Van Lier, and Grietje Zeeman. 2015. "Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions" Water 7, no. 5: 2402-2421. https://doi.org/10.3390/w7052402
APA StyleYaya-Beas, R. -E., Ayala-Limaylla, C., Kujawa-Roeleveld, K., Van Lier, J. B., & Zeeman, G. (2015). Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions. Water, 7(5), 2402-2421. https://doi.org/10.3390/w7052402