Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Scenario | Water Price (Dollar per m3) | Energy Price (EP) | Crops Prices (P) | Future Precipitation | ||
---|---|---|---|---|---|---|
S0 | Baseline | Baseline | Baseline | D | N | W |
S1 | 0 | 100% annual growth | 20% increase | D | N | W |
S2 | 0 | 150% annual growth | 20% increase | D | N | W |
S3 | 0 | 100% annual growth | 10% increase | D | N | W |
S4 | 0 | 150% annual growth | 10% increase | D | N | W |
S5 | 0.07 | Baseline | 10% increase | D | N | W |
S6 | 0.07 | Baseline | 20% increase | D | N | W |
S7 | 0.07 | 100% annual growth | 20% increase | D | N | W |
S8 | 0.07 | 150% annual growth | 20% increase | D | N | W |
S9 | 0.07 | 100% annual growth | 10% increase | D | N | W |
S10 | 0.07 | 150% annual growth | 10% increase | D | N | W |
S11 | 0.1 | Baseline | 10% increase | D | N | W |
S12 | 0.1 | Baseline | 20% increase | D | N | W |
S13 | 0.1 | 100% annual growth | 20% increase | D | N | W |
S14 | 0.1 | 150% annual growth | 20% increase | D | N | W |
S15 | 0.1 | 100% annual growth | 10% increase | D | N | W |
S16 | 0.1 | 150% annual growth | 10% increase | D | N | W |
Scenario | Groundwater Balance in the Planning Horizon () (million m3) | To Baseline Scenario | Changes of Height of the Water Table (∆St) (m) | %∆St To Baseline Scenario |
---|---|---|---|---|
S0 | −232 | - | −6.62 | - |
S1 | −239 | −3.06 | −6.82 | −3.02 |
S2 | −228 | 1.94 | −6.49 | 1.96 |
S3 | −228 | 1.59 | −6.52 | 1.15 |
S4 | −166 | 28.1 | −4.75 | 28.2 |
S5 | −206 | 11.34 | −5.87 | 11.32 |
S6 | −242 | −4.42 | −6.91 | −4.38 |
S7 | −171 | 26.2 | −4.88 | 26.28 |
S8 | −147 | 36.7 | −4.19 | 36.70 |
S9 | −10.3 | 95.53 | −0.29 | 95.61 |
S10 | 56.9 | 124.4 | 1.62 | 124.47 |
S11 | −155 | 33.1 | −4.42 | 33.23 |
S12 | −232 | −0.16 | −6.63 | −0.15 |
S13 | −153 | 34.16 | −4.36 | 34.13 |
S14 | −119 | 48.4 | −3.41 | 48.48 |
S15 | 42.7 | 118.3 | 1.21 | 118.2 |
S16 | 62 | 126.6 | 1.76 | 126.5 |
Scenario | Groundwater Balance in the Planning Horizon () (million m3) | To Baseline Scenario | Changes of Height of the Water Table (∆St) (m) | %∆St To Baseline Scenario |
---|---|---|---|---|
S0 | −51.4 | - | −1.46 | - |
S1 | −58.6 | −13.8 | −1.67 | −14.38 |
S2 | −46.9 | 8.78 | −1.33 | 8.90 |
S3 | −47.7 | 7.19 | −1.36 | 6.84 |
S4 | 14 | 127.3 | 0.4 | 1273 |
S5 | −25 | 51.2 | −0.71 | 51.36 |
S6 | −61.7 | −19.9 | −1.76 | −20.54 |
S7 | 9.5 | 118.53 | 0.27 | 118.4 |
S8 | 33.9 | 165.8 | 0.96 | 165.7 |
S9 | 170 | 431.5 | 4.8 | 428.7 |
S10 | 238 | 562.3 | 6.78 | 564.3 |
S11 | 25.6 | 149.8 | 0.73 | 150 |
S12 | −51.8 | −0.73 | −1.47 | −0.68 |
S13 | 27.9 | 154.3 | 0.79 | 154.1 |
S14 | 61 | 218.6 | 1.74 | 219.1 |
S15 | 22.3 | 143.4 | 6.37 | 536.3 |
S16 | 243 | −572.1 | 6.92 | 573.9 |
Scenario | Groundwater Balance in the Planning Horizon () (million m3) | To Baseline Scenario | Changes of Height of the Water Table (∆St) (m) | %∆St To Baseline Scenario |
---|---|---|---|---|
S0 | 223 | - | 6.35 | - |
S1 | 216 | −3.19 | 6.15 | −3.14 |
S2 | 227 | 2.02 | 6.48 | 2.04 |
S3 | 226 | 1.65 | 6.46 | 1.73 |
S4 | 288 | 29.37 | 8.22 | 29.44 |
S5 | 249 | 11.82 | 7.1 | 11.81 |
S6 | 212 | −4.6 | 6.06 | −4.56 |
S7 | 284 | 27.3 | 8.09 | 27.4 |
S8 | 308 | 38.2 | 8.7 | 37 |
S9 | 445 | 99.5 | 12.6 | 98.42 |
S10 | 512 | 129.7 | 14.6 | 129.9 |
S11 | 300 | 34.5 | 8.55 | 34.6 |
S12 | 222 | −0.16 | 6.34 | −0.15 |
S13 | 275 | 23.58 | 8.62 | 35.74 |
S14 | 335 | 50.4 | 9.56 | 50.55 |
S15 | 498 | 123.3 | 14.2 | 123.6 |
S16 | 517 | 132 | 14.74 | 132.1 |
4. Discussion
5. Conclusion
References
- National Research Council. Water Implications of Biofuels Production in the United States; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Sampat, P. Groundwater Shock: The Polluting of the World’s Major Fresh Water Stores. World Watch 2000, 13, 10–22. [Google Scholar]
- Shah, T. The Groundwater Economy of South Asia: An Assessment of Size. Significance and Socio-ecological Impacts. In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; Giordano, M., Vilholth, K.G., Eds.; International Water Management Institute: Colombo, Sri Lanka, 2007; pp. 7–36. [Google Scholar]
- Acharyya, A. Groundwater, Climate Change and Sustainable Well Being of the Poor: Policy options for South Asia, China and Africa. Procedia Soc. Behav. Sci. 2014, 157, 226–235. [Google Scholar] [CrossRef]
- Balali, H.; Khalilian, S.; Viaggi, D.; Bartolini, F.; Ahmadian, M. Groundwater balance and conservation under different water pricing and agriculture policy scenarios: A case study of the Hamedan-Bahar plain. Ecol. Econ. 2011, 70, 863–872. [Google Scholar] [CrossRef]
- Rosenzweig, W.; Casassa, G.; Karoly, D.J.; Imeson, A.; Liu, C.; Menzal, A.; Rawlins, S.; Root, T.L.; Seguin, B.; Tryjanowski, P. Assessment of observed changes and responses in natural and managed systems. In Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hall, N.D.; Stuntz, B.B.; Abrams, R.H. Climate change and freshwater resources. Nat Resour Environ 2008, 22, 30–35. [Google Scholar]
- Balali, H.; Viaggi, D. A Hydro-Economic Model to Analysis Energy Subsidies Adjustment of Agriculture Sector on Groundwater Exploitation. In Proceedings of the Groundwater 2011 Conference, Orlean, France, 14–16 March 2011; pp. 209–210.
- Pamela, G.; Katie, R.; Grafton, Q. Economics and spatial modeling of groundwater extraction. Hydrol. J. 2012, 20, 831–834. [Google Scholar]
- Negri, D.H. The common property aquifer as a differential game. Water Resour. Res. 1989, 25, 9–15. [Google Scholar] [CrossRef]
- Li, R.; Merchant, J. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and bio fuels-related land use change: A case study in North Dakota, USA. Sci. Total Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.E.; Qureshi, K.; Bajracharya, K.; Kirby, M. Integrated Biophysical and Economic Modeling Framework to Assess Impacts of Alternative Groundwater Management Options. Water Resour. Manag. 2008, 22, 321–341. [Google Scholar] [CrossRef]
- Minciardi, R.; Robba, M.; Roberta, S. Decision models for sustainable groundwater planning and control. J. Control Eng. Pract. 2007, 15, 1013–1029. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics; The MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Sharawat, I.; Dahiya, R.D.; Dahiya, R.; Kumari, S. System Dynamics Approach: A Novel Water Resource Management Tool. Int. J. Environ. Res. Dev. 2014, 4, 297–302. [Google Scholar]
- Khan, Sh.; Luo, Y.; Ahmad, A. System Dynamics Modeling for Water Savings and Conjuctive Water Management. In Proceedings of the ASIMMOD 2nd International Conference on Simulation and Modelling, Chiang Mai, Thailand, 9–11 January 2007.
- Simonovic, S.P. Tools for water management: One view of the future. Water Int. 2000, 25, 76–88. [Google Scholar] [CrossRef]
- Zare Abyaneh, H. Spatial Analysis of Groundwater Resources Quality Parameters of Hamadan-Bahar Plain. Geogr. Environ. Hazards 2014, 8, 17–19. [Google Scholar]
- Annual Report of Groundwater Resource of Bahar-Hamadan Plain; Water Resource Organization of Hamadan: Hamedan, Iran, 2008.
- Jafari, A.M. Technical and Economical Evaluation of Two Methods of Sprinkler and Drip Irrigation on Three Cultivars of Potato in Hamadan; Agriculture and Natural Resource research Institute of Hamadan: Hamedan, Iran, 2008. [Google Scholar]
- Jafari, A.M. Economic Analysis of Investment in Water Saving Technology: A Case Study in Hamedan Province. Master’s Thesis, Agricultural Economics Department, Shiraz University, Shiraz, Iran, 1997. [Google Scholar]
- Rohani, S. Determination of Optimum Cropping Pattern with the Emphasis on Sustainability of Water Resources: A Case Study of Hamedan-Bahar Plain. Ph.D. Thesis, Agricultural Economics Department, Tehran University, Tehran, Iran, 2006. [Google Scholar]
- Akhavan, S.; Mousavi, S.F.; Abedi-Koupai, J.; Abbaspour, K.C. Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar Plain. Environ. Earth Sci. 2011, 63, 1155–1167. [Google Scholar] [CrossRef]
- Reports of Meteorology of Bahar-Hamadan Plain; Local Bureau Meteorology of Hamadan: Hamedan, Iran, 2014.
- Yang, H.; Zhang, X.; Zehnder, A.J.B. Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agric. Water Manag. 2003, 61, 143–161. [Google Scholar] [CrossRef]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Holman, I.P. Climate change impacts on groundwater recharge-Uncertainty, shortcomings, and the way forward. Hydrol. J. 2005, 14, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Scibek, J.; Allen, D.M. Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour. Res. 2006, 42, 1–18. [Google Scholar] [CrossRef]
- Toews, M.W.; Allen, D.M. Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. J. Hydrol. 2009, 374, 265–281. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balali, H.; Viaggi, D. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios. Water 2015, 7, 5258-5271. https://doi.org/10.3390/w7105258
Balali H, Viaggi D. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios. Water. 2015; 7(10):5258-5271. https://doi.org/10.3390/w7105258
Chicago/Turabian StyleBalali, Hamid, and Davide Viaggi. 2015. "Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios" Water 7, no. 10: 5258-5271. https://doi.org/10.3390/w7105258