Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grey Water Sludge and Black Water Source
2.2. Experimental Setup of the UASB Reactors
2.3. Analyses and Measurements
2.4. Batch Experiments
2.5. Statistical Analysis
2.6. Energy Recovery Calculations
2.7. Heavy Metal Analysis
3. Results and Discussion
3.1. Energy Recovery
Parameter | Unit | BW-UASB | MIX-UASB (5 BW:1 GW-S) | |
---|---|---|---|---|
Influent | Influent | GW Sludge | ||
AS | mg/L | 189 (52) | 328 (259) | 523 (383) |
TSS | g/L | 4.1 | 6.0 | 8.1 |
VSS | g/L | 3.3 | 4.4 | 6.7 |
CODtotal | gCOD/L | 7.1 (1.1) | 17 (3.9) | 63 |
Lipid | gCOD/L | 1.4 (0.26) | 10 (1.9) | 47 |
wt% | 20 | 59 | 74 | |
Protein | gCOD/L | 4.2 (0.26) | 5.6 (2.0) | 10 |
wt% | 58 | 33 | 15 | |
Carbohydrate | gCOD/L | 1.5 (0.76) | 0.8 (1.0) | 6.7 |
wt% | 22 | 4.7 | 11 |
Parameter | Unit | BW-UASB | MIX-UASB |
---|---|---|---|
Temperature | °C | 25 | 25 |
Loading rate | kgCOD/m3/d | 0.9 (0.2) | 1.2 (0.5) |
HRT | d | 9.3 (0.9) | 10 (2.2) |
SRT | d | 138 (73) | 131 (90) |
Sludge concentration | gVSS/L reactor | 15 (2.4) | 15 (2.9) |
Methanization | % | 69 | 74 |
3.2. Effluent Quality
3.3. Excess Sludge Quality
Parameter | Unit | BW-UASB | Removal | MIX-UASB | Removal | |||
---|---|---|---|---|---|---|---|---|
Influent | Effluent | (%) | GW sludge | Influent | Effluent | (%) | ||
pH | – | 8.1 (0.23) | 7.8 (0.51) | – | 7.2 (1.3) | 8.1 (0.12) | 7.3 (0.18) | – |
CODtotal | gCOD/L | 11 (4.1) | 1.1 (0.36) | 90 | 15 (13) | 12 (3.9) | 1.3 (0.66) | 88 |
CODsuspended | gCOD/L | 6.4 (2.9) | 0.23 (0.26) | 96 | 15 (12) | 8.5 (3.0) | 0.25 (0.21) | 96 |
CODcolloidal | gCOD/L | 1.2 (0.63) | 0.28 (0.13) | 77 | 0.39 (0.37) | 0.84 (0.42) | 0.30 (0.20) | 64 |
CODsoluble | gCOD/L | 2.9 (0.94) | 0.57 (0.075) | 80 | 1.1 (0.68) | 1.5 (0.43) | 0.53 (0.19) | 65 |
VFA | gCOD/L | 0.99 (1.0) | 0.020 (0.055) | – | 0.85 (0.52) | 0.25 (0.15) | 0.039 (0.069) | – |
TN | gN/L | 1.2 (0.22) | 1.1 (0.12) | 8 | 0.46 (0.29) | 1.3 (0.22) | 1.1 (0.21) | 15 |
TP | gP/L | 0.19 | 0.090 (0.034) | 53 | 0.12 (0.07) | 0.28 (0.10) | 0.14 (0.081) | 50 |
BOD5 | g/L | – | 0.16 (0.030) | – | – | – | 0.20 (0.050) | – |
Element | BW-UASB | MIX-UASB | Dutch Sludge | ||||
---|---|---|---|---|---|---|---|
Influent | Excess Sludge | GW Sludge | Influent | Excess Sludge | Reuse Guidelines 1 | ||
As | 0.30 (0.11) | 0.75 (0.03) | 0.65 (0.09) | 0.57 (0.23) | 0.88 (0.06) | 15 | |
Cd | 0.17 (0.08) | 0.76 (0.06) | 0.29 (0.14) | 0.30 (0.11) | 0.70 (0.05) | 1.3 | |
Cr | 77 (82) | 39 (39) | 57 (52) | 35 (24) | 62 (6.0) | 75 | |
Cu | 95 (51) | 220 (23) | 172 (68) | 161 (62) | 331 (23) | 75 | |
Hg | 0.01 (0.004) | 0.006 (0.003) | 0.004 (0.000) | 0.004 (0.000) | 0.01 (0.003) | 0.75 | |
Ni | 46 (47) | 25 (24) | 34 (30) | 20 (13) | 33 (4) | 30 | |
Pb | 1.4 (0.7) | 4.4 (0.7) | 17 (6.0) | 15 (7.0) | 12 (2.6) | 100 | |
Zn | 284 (85) | 821 (109) | 441 (133) | 431 (155) | 1132 (68) | 300 |
3.4. Outlook
4. Conclusions
Acknowledgments
Author Contributions
Appendix
Parameter | Unit | BlackWater | Grey Water Sludge | MIX (5 BW:1 GW-S) |
---|---|---|---|---|
COD total | g/L | 8.5 | 25 | 11 |
AS | mg/L | 189 | 987 | 309 |
BMP | % | 61 (10) | 92 (0) | 88 (3) |
Conflicts of Interest
References
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar]
- Mata-Alvarez, J.; Mace, S.; Llabres, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar]
- Davidsson, Å.; Lövstedt, C.; la Cour Jansen, J.; Gruvberger, C.; Aspegren, H. Co-digestion of grease trap sludge and sewage sludge. Waste Manag. 2008, 28, 986–992. [Google Scholar]
- Luostarinen, S.; Luste, S.; Sillanpää, M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour. Technol. 2009, 100, 79–85. [Google Scholar] [PubMed]
- Comino, E.; Riggio, V.A.; Rosso, M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012, 114, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; van Wambeke, M.; Carballa, M.; Verstraete, W. Improvement of the anaerobic treatment of potato processing wastewater in a UASB reactor by co-digestion with glycerol. Biotechnol. Lett. 2008, 30, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities. The White Paper of RES; Commission of the European Communities: Brussels, Belgium, 1997. [Google Scholar]
- Zeeman, G.; Kujawa, K.; de Mes, T.; Hernandez, L.; de Graaff, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C.; et al. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, K. Anaerobic Treatment of Concentrated Wastewater in DESAR Concepts; STOWA: Utrecht, the Netherlands, 2005. [Google Scholar]
- Kujawa-Roeleveld, K.; Elmitwalli, T.; Gaillard, A.; van Leeuwen, M.; Zeeman, G. Co-digestion of concentrated black water and kitchen refuse in an accumulation system within the DESAR (decentralized sanitation and reuse) concept. Water Sci. Technol. 2003, 48, 121–128. [Google Scholar]
- Luostarinen, S.; Rintala, J. Anaerobic on-site treatment of kitchen waste in combination with black water in UASB-septic tanks at low temperatures. Bioresour. Technol. 2007, 98, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Ghunmi, L.A.; Zeeman, G.; Fayyad, M.; van Lier, J.B. Grey water treatment systems: A review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 657–698. [Google Scholar] [CrossRef]
- Böhnke, B. Energieminimierung durch das Adsorptions-Belebungsverfahren; Institut für Siedlungswasserwirtschaft: Aachen, Germany, 1981; Volume 49. (In German) [Google Scholar]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioresour. Technol. 2010, 101, 9065–9070. [Google Scholar]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. Water 2010, 2, 101–119. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Waste and Wastewater; APHA: New York, NY, USA, 1998. [Google Scholar]
- Bligh, E.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [PubMed]
- Ji, Z.; Chen, G.; Chen, Y. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Bioresour. Technol. 2010, 101, 3457–3462. [Google Scholar] [PubMed]
- Miron, Y.; Zeeman, G.; van Lier, J.B.; Lettinga, G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000, 34, 1705–1713. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Analysis; Prentice Hall International: Englewood, NJ, USA, 1998. [Google Scholar]
- Reactor Performance of the AB-process and the UASB Reactor at the DeSaH Demonstration Site; DeSaH B.V.: Sneek, the Netherlands, 2010.
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment Reuse, 4th ed.; McGraw-Hill Series in Civil and Environmental Engineering; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Tervahauta, T.; Hoang, T.; Hernández, L.; Zeeman, G.; Buisman, C. Prospects of Source-Separation-Based sanitation concepts: A model-based study. Water 2013, 5, 1006–1035. [Google Scholar] [CrossRef]
- Sosnowski, P.; Wieczorek, A.; Ledakowicz, S. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv. Environ. Res. 2003, 7, 609–616. [Google Scholar]
- Ağdağ, O.N.; Sponza, D.T. Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochem. 2005, 40, 1871–1879. [Google Scholar]
- García-Morales, J.L.; Nebot, E.; Romero, L.I.; Sales, D. Comparison between acidogenic and methanogenic inhibition caused by linear alkylbenzene-sulfonate (LAS). Chem. Biochem. Eng. Q. 2001, 15, 13–20. [Google Scholar]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Tervahauta, T.; Rani, S.; Hernández Leal, L.; Buisman, C.J.N.; Zeeman, G. Black water sludge reuse in agriculture: Are heavy metals a problem? J. Hazard. Mater. 2014, 274, 229–236. [Google Scholar] [CrossRef]
- Besluit kwaliteit en gebruik Overige Organische Meststoffen. Manual of Environmental Policy; BOOM: Rijswijk, the Netherlands, 2008. (In Dutch) [Google Scholar]
- Hernández Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C.J. Comparison of three systems for biological greywater treatment. Water 2010, 2, 155–169. [Google Scholar]
- Wetsus, center of excellence for sustainable water technology. Available online: www.wetsus.nl (accessed on 5 August 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tervahauta, T.; Bryant, I.M.; Leal, L.H.; Buisman, C.J.N.; Zeeman, G. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water. Water 2014, 6, 2436-2448. https://doi.org/10.3390/w6082436
Tervahauta T, Bryant IM, Leal LH, Buisman CJN, Zeeman G. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water. Water. 2014; 6(8):2436-2448. https://doi.org/10.3390/w6082436
Chicago/Turabian StyleTervahauta, Taina, Isaac M. Bryant, Lucía Hernández Leal, Cees J. N. Buisman, and Grietje Zeeman. 2014. "Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water" Water 6, no. 8: 2436-2448. https://doi.org/10.3390/w6082436