Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System
Abstract
:1. Introduction
2. Michigan-Huron Lake-Level Drivers
Variable | Description |
---|---|
Py | Annual total over-lake precipitation 1 |
Ry | Annual total runoff 1 |
Ey | Annual total evaporative losses 1 |
Iy | Annual total inflow (from Lake Superior for Lake Michigan-Huron) 1 |
Oy | Annual total outflow (through the St. Marys River and the Chicago Diversion for Lake Michigan-Huron) 1 |
, | Observed beginning-of-month lake-level as reported by GLERL (G) and monthly-average level by USACE (U) |
dLm,y | Observed monthly lake-level change as estimated by Lm+1,y − Lm,y |
, | Observed seasonal (3-month) lake-level change as estimated by dLm−1,y + dLm,y + dLm+1,y, where m = 7 for summer (s) and m = 12 for winter (w) |
Computed annual lake-level change associated with the precipitation-driven components 1 Py, Ry and Iy; see Equation (1) | |
, | Daily (d) and annual (y) total regional precipitation depth 2 |
Computed annual lake-level change associated with ; see Equation (2) | |
Reconstructed lake-level components associated with the 8-y and 12-y cycles 3 | |
Annual change of each reconstructed component as estimated by − | |
PT | Average totaltotal precipitation 2 defined as |
Pf | Average precipitation frequency 2, defined as |
Pa | Average precipitation amount 2, defined as |
, | Precipitation frequency index , and amount , with multidecadal variability removed and averaged over 3 years |
2.1. Drivers of Lake-Level Changes
2.2. Connecting Regional Precipitation to Lake-Level Fluctuations
2.3. Lag Time of Precipitation Effects on Lake-Level Changes
3. Timing of Lake-Level Changes and Precipitation Behavior
3.1. Seasonality of Lake-Level Periodicities
3.2. Seasonality of Precipitation Characteristics
3.3. Verification of Seasonal Characteristics
Index | Average | Increasing | Decreasing | Significance |
---|---|---|---|---|
Total precipitation (daily average in mm) | 1.58 | 1.67 | 1.49 | p = 0.03 |
Frequency (daily probability) | 0.72 | 0.73 | 0.72 | p = 0.44 |
Amount (daily average in mm) | 2.18 | 2.29 | 2.06 | p = 0.01 |
Index | Average | Increasing | Decreasing | Significance |
---|---|---|---|---|
Total precipitation (daily average in mm) | 2.38 | 2.50 | 2.26 | p = 0.02 |
Frequency (daily probability) | 0.72 | 0.75 | 0.70 | p < 0.01 |
Amount (daily average in mm) | 3.26 | 3.32 | 3.20 | p = 0.20 |
4. Climate Connections
4.1. The 8-y Wintertime Cycle
4.1.1. Wintertime Anomalies
4.1.2. The Pacific/North American Index
4.2. The 12-y Summertime Cycle
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Lakes Website. Available online: http://www.worldlakes.org (accessed on 22 March 2014).
- Changnon, S.A., Jr. Climate fluctuations and record-high levels of Lake Michigan. Bull. Am. Meteorol. Soc. 1987, 68, 1394–1402. [Google Scholar] [CrossRef]
- Changnon, S.A. Temporal behavior of levels of the Great Lakes and climate variability. J. Gt. Lakes Res. 2004, 30, 184–200. [Google Scholar] [CrossRef]
- Rodionov, S.N. Association between winter precipitation and water level fluctuations in the Great Lakes and atmospheric circulation patterns. J. Clim. 1994, 7, 1693–1706. [Google Scholar] [CrossRef]
- Polderman, N.J.; Pryor, S.C. Linking synoptic-scale climate phenomena to lake-level variability in the Lake Michigan-Huron Basin. J. Gt. Lakes Res. 2004, 30, 419–434. [Google Scholar] [CrossRef]
- Hanrahan, J.L.; Kravtsov, S.V.; Roebber, P.J. Quasi-periodic decadal cycles in levels of lakes Michigan and Huron. J. Gt. Lakes Res. 2009, 35, 30–35. [Google Scholar] [CrossRef]
- Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.Y.; Watras, A.J.; Morgan, S.; Stanley, E.H. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett. 2014, in press. [Google Scholar]
- Hanrahan, J.L.; Kravtsov, S.V.; Roebber, P.J. Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Delworth, T.L.; Mann, M.E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 2000, 16, 661–676. [Google Scholar] [CrossRef]
- Gray, S.T.; Graumlich, L.J.; Betancourt, J.L.; Pederson, G.T. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Rogers, J.C.; Coleman, J.S.M. Interactions between the Atlantic Multidecadal Oscillation, El Nino/La Nina, and the PNA in winter Mississippi valley stream flow. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- McCabe, G.J.; Palecki, M.A.; Betancourt, J.L. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA 2004, 101, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Hodson, D.L. Atlantic Ocean forcing of North American and European summer climate. Science 2005, 309, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 3:1–3:41. [Google Scholar]
- Ghil, M.; Yiou, P.; Hallegatte, S.; Malamud, B.D.; Naveau, P.; Soloviev, A.; Friederichs, P.; Keilis-Borok, V.; Kondrashov, D.; Kossobokov, V.; et al. Extreme events: dynamics, statistics, and prediction. Nonlin. Process. Geophys. 2011, 18, 295–350. [Google Scholar]
- GLERL data. Available online: http://www.glerl.noaa.gov/data/pgs/lake_levels.html (accessed on 1 June 2010).
- Clites, A.H.; Quinn, F.H. The history of Lake Superior regulation: Implications for the future. J. Gt. Lakes Res. 2003, 29, 157–171. [Google Scholar] [CrossRef]
- International Research Institute/Lamont-Doherty Earth Observatory (IRI/LDEO) Climate Data Library. Available online: http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.REGIONAL/.USA/.daily/.gridded/ (accessed on 1 March 2011).
- Zolina, O.; Kapala, A.; Simmer, C.; Gulev, S.K. Analysis of extreme precipitation over Europe from different reanalyses: A comparative assessment. Glob. Planet. Chang. 2004, 44, 129–161. [Google Scholar] [CrossRef]
- Hanrahan, J.L. Connecting Past and Present Climate Variability to the Water Levels of Lakes Michigan and Huron. Ph.D. Thesis, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, WI, USA, 2010. [Google Scholar]
- Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. Ocean. 1998, 103, 18567–18589. [Google Scholar] [CrossRef]
- Leathers, D.J.; Yarnal, B.; Palecki, M.A. The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Clim. 1991, 4, 517–528. [Google Scholar]
- National Weather Service, Climate Prediction Center. Available online: http://www.cpc.ncep.noaa.gov (accessed on 28 January 2011).
- Moron, V.; Vautard, R.; Ghil, M. Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim. Dyn. 1998, 14, 545–569. [Google Scholar] [CrossRef]
- Da Costa, E.D.; de Verdiere, A.C. The 7.7-year North Atlantic Oscillation. Q. J. R. Meteorol. Soc. 2002, 128, 797–817. [Google Scholar] [CrossRef]
- Juckes, M.; Smith, R.K. Convective destabilization by upper-level troughs. Q. J. R. Meteorol. Soc. 2000, 126, 111–123. [Google Scholar] [CrossRef]
- Gold, D.A.; Nielsen-Gammon, J.W. Potential vorticity diagnosis of the severe convective regime. Part III: The Hesston tornado outbreak. Mon. Weather Rev. 2008, 136, 1593–1611. [Google Scholar]
- Van Klooster, S.L.; Roebber, P.J. Surface-based convective potential in the contiguous United States in a business-as-usual future climate. J. Clim. 2009, 22, 3317–3330. [Google Scholar] [CrossRef]
- Wang, H.; Ting, M.; Ji, M. Prediction of seasonal mean United States precipitation based on El Nino sea surface temperatures. Geophys. Res. Lett. 1999, 26, 1341–1344. [Google Scholar] [CrossRef]
- Brinkmann, W.A.R. Water supply to the Great Lakes reconstructed from tree-rings. J. Clim. Appl. Meteorol. 1987, 26, 530–538. [Google Scholar] [CrossRef]
- Quinn, F.H.; Sellinger, C.E. A reconstruction of Lake Michigan–Huron water levels derived from tree ring chronologies for the period 1600–1961. J. Great Lakes Res. 2006, 32, 29–39. [Google Scholar] [CrossRef]
- Wiles, G.C.; Krawiec, A.C.; D’Arrigo, R.D. A 265-year reconstruction of Lake Erie water levels based on North Pacific tree rings. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Cullen, H.M.; D’Arrigo, R.D.; Cook, E.R.; Mann, M.E. Multiproxy reconstructions of the North Atlantic Oscillation. Paleoceanography 2001, 16, 27–39. [Google Scholar] [CrossRef]
- Fye, F.K.; Stahle, D.W.; Cook, E.R.; Cleaveland, M.K. NAO influence on sub-decadal moisture variability over central North America. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- D’Arrigo, R.D.; Anchukaitis, K.J.; Buckley, B.; Cook, E.; Wilson, R. Regional climatic and North Atlantic Oscillation signatures in West Virginia red cedar over the past millennium. Glob. Planet. Change 2012, 84–85, 8–13. [Google Scholar]
- Fritsch, J.M.; Kane, R.J.; Chelius, C.R. The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Clim. Appl. Meteorol. 1986, 25, 1333–1345. [Google Scholar] [CrossRef]
- Heideman, K.F.; Michael Fritsch, J. Forcing mechanisms and other characteristics of significant summertime precipitation. Weath. Forecast. 1988, 3, 115–130. [Google Scholar] [CrossRef]
- Lambert, S.J. The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J. Clim. 1995, 8, 1447–1452. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P.; Serreze, M.C. Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Clim. 2001, 14, 2763–2768. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 448, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Catto, J.L.; Shaffrey, L.C.; Hodges, K.I. Northern Hemisphere Extratropical Cyclones in a Warming Climate in the HiGEM High-Resolution Climate Model. J. Clim. 2011, 24, 5336–5352. [Google Scholar] [CrossRef]
- McDonald, R.E. Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim. Dyn. 2011, 37, 1399–1425. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Keenlyside, N. Will extratropical storms intensify in a warmer climate? J. Clim. 2009, 22, 2276–2301. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Easterling, D.R.; Redmond, K.; Young, J.; Yin, X.; Hennon, P. Probable maximum precipitation and climate change. Geophys. Res. Lett. 2013, 40, 1402–1408. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Tebaldi, C. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sun, Y.; Solomon, S.; Dai, A.; Portmann, R.W. How often will it rain? J. Clim. 2007, 20, 4801–4818. [Google Scholar] [CrossRef]
- Allan, R.P; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar]
- Lenderink, G.; van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK & New York, NY, USA, 2013. [Google Scholar]
- Assel, R.A.; Quinn, F.H.; Sewnger, C.E. Hydroclimatic factors of the recent record drop in Laurentian Great Lakes water levels. Bull. Am. Meteorol. Soc. 2004, 85, 1143–1151. [Google Scholar] [CrossRef]
- Sellinger, C.E.; Stow, C.A.; Lamon, E.C.; Qian, S.S. Recent water level declines in the Lake Michigan−Huron System. Environ. Sci. Technol. 2007, 42, 367–373. [Google Scholar] [CrossRef]
- MTM-SSA Toolkit; software for spectral analysis. Theoretical Climate Dynamics group at the University of California-Los Angeles: Los Angeles, CA, USA, 2010. Available online: http://www.atmos.ucla.edu/tcd/ssa/ (accessed on 1 June 2010).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hanrahan, J.; Roebber, P.; Kravtsov, S. Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System. Water 2014, 6, 2278-2299. https://doi.org/10.3390/w6082278
Hanrahan J, Roebber P, Kravtsov S. Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System. Water. 2014; 6(8):2278-2299. https://doi.org/10.3390/w6082278
Chicago/Turabian StyleHanrahan, Janel, Paul Roebber, and Sergey Kravtsov. 2014. "Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System" Water 6, no. 8: 2278-2299. https://doi.org/10.3390/w6082278
APA StyleHanrahan, J., Roebber, P., & Kravtsov, S. (2014). Attribution of Decadal-Scale Lake-Level Trends in the Michigan-Huron System. Water, 6(8), 2278-2299. https://doi.org/10.3390/w6082278