Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental
2.3. Sample Analysis
2.4. Characterization
3. Results
3.1. Characterization
3.2. Electrical Conductivity to Determine the Critical Micelles Concentration (CMC) of SDS
3.3. Effect of SDS Concentrations on the Flux and Removal/Reduction of Cd2+ Metal Ions
3.4. Effect of pH on the Removal Efficiency of Cd2+
3.5. Evaluation of Membrane Performance and Removal Efficiency for Cd2+ over 40 h
3.6. Relation Between the Removal Efficiency of Cd2+ at Different Concentrations
3.7. Effect on the Removal Efficiency of Cd2+ in the Presence of an Electrolyte
3.8. Comparison of MEUF Performance with Reported Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CMC | Critical micelle concentration |
| SDS | Sodium dodecyl sulfate |
| RCRA | Resource Conservation and Recovery Act |
| MWCO | Molecular weight cutoff |
| FTIR | Fourier-transform infrared |
| AAS | Atomic Absorption Spectrophotometer |
References
- Aryanti, N.; Nafiunisa, A.; Giraldi, V.F.; Buchori, L. Separation of organic compounds and metal ions by micellar-enhanced ultrafiltration using plant-based natural surfactant (saponin). Case Stud. Chem. Environ. Eng. 2023, 8, 2–11. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- World Water Assessment Programme (WWAP). World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- Chattopadhyay, S. Toxic Effect of Metal Ions in Water Resources. Glob. J. Sci. Front. Res. 2016, 16, 15–18. [Google Scholar]
- Mitra, S.; Jyoti, A.; Montakim, A.; Bin, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Uddin, M.; Osman, H.; Alhumaydhi, F.A.; et al. Journal of King Saud University—Science Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.—Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Shah, S.B. Heavy Metals in the Marine Environment—An Overview; Springer Nature: New York, NY, USA, 2021. [Google Scholar]
- Kiran; Bharti, R.; Sharma, R. Effect of heavy metals: An overview. Mater. Today Proc. 2021, 51, 880–885. [Google Scholar] [CrossRef]
- As, R. The RCRA 8 Metals: What You Need to Know Table of Contents. No. Cd, 2023. Available online: http://www.alsglobal.com/en/news-and-publications/2023/10/rcra-8-metals-guide (accessed on 7 January 2026).
- Krajewski, A. Analysis of Heavy Metal Exposures and Evaluation of Detection Methods for Heavy Metals in Drinking Water. Rev. Bras. Ergon. 2016, 9, 10. [Google Scholar]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Mandour, R.A.; Azab, Y.A. The prospective toxic effects of some heavy metals overload in surface drinking water of Dakahlia Governorate, Egypt. Int. J. Occup. Environ. Med. 2011, 2, 245–253. [Google Scholar]
- Srinivasa Gowd, S.; Govil, P.K. Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu, India. Environ. Monit. Assess. 2008, 136, 197–207. [Google Scholar] [CrossRef]
- University Andreas Kubiera; Wilkinb, R.T.; Pichlera, T. EPA Public Access. In Atmospheric Environment; 2017; Volume 23, pp. 248–258. Available online: https://catalog.data.gov/dataset/wilkin-et-al-2018-prb-long-term-performance-tce (accessed on 7 January 2026).
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef]
- Hubicki, Z.; Kołodyńska, D. Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods. Intech 2016, 11, 13. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Thaçi, B.S.; Gashi, S.T. Reverse osmosis removal of heavy metals from wastewater effluents using biowaste materials pretreatment. Polish J. Environ. Stud. 2019, 28, 337–341. [Google Scholar] [CrossRef]
- Landaburu-Aguirre, J.; Pongrácz, E.; Sarpola, A.; Keiski, R.L. Simultaneous removal of heavy metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration. Sep. Purif. Technol. 2012, 88, 130–137. [Google Scholar] [CrossRef]
- Xu, K.; Zeng, G.; Huang, J.; Wu, J.; Fang, Y.; Huang, G.; Li, J.; Xi, B.; Liu, H. Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surf. A Physicochem. Eng. Asp. 2007, 294, 140–146. [Google Scholar] [CrossRef]
- Huang, J.; Shi, L.; Zeng, G.; Li, H.; Huang, H.; Gu, Y.; Shi, Y.; Yi, K.; Li, X. Removal of Cd(Ⅱ) by micellar enhanced ultrafiltration: Role of SDS behaviors on membrane with low concentration. J. Clean. Prod. 2019, 209, 53–61. [Google Scholar] [CrossRef]
- Huang, J.H.; Zeng, G.M.; Zhou, C.F.; Li, X.; Shi, L.J.; He, S.B. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater. 2010, 183, 287–293. [Google Scholar] [CrossRef]
- Karate, V.D.; Marathe, K.V. Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J. Hazard. Mater. 2008, 157, 464–471. [Google Scholar] [CrossRef]
- Shanks, P.C.; Franses, E.I. Estimation of micellization parameters of aqueous sodium dodecyl sulfate from conductivity data. J. Phys. Chem. 1992, 96, 1794–1805. [Google Scholar] [CrossRef]
- Mitsionis, A.I.; Vaimakis, T.C. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem. Phys. Lett. 2012, 547, 110–113. [Google Scholar] [CrossRef]
- Yaqub, M.; Lee, S.H. Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review. Environ. Eng. Res. 2019, 24, 363–375. [Google Scholar] [CrossRef]
- Zeng, G.M.; Li, X.; Huang, J.H.; Zhang, C.; Zhou, C.F.; Niu, J.; Shi, L.J.; He, S.B.; Li, F. Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. J. Hazard. Mater. 2011, 185, 1304–1310. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Miyagishi, S.; Okada, K.; Asakawa, T. Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methylglucamides (MEGA-n). J. Colloid Interface Sci. 2001, 238, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Bade, R.; Lee, S.H.; Jo, S.; Lee, H.S.; Lee, S. Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination 2008, 229, 264–278. [Google Scholar] [CrossRef]
- Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R.L. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination 2009, 240, 262–269. [Google Scholar] [CrossRef]
- Yenphan, P.; Chanachai, A.; Jiraratananon, R. Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination 2010, 253, 30–37. [Google Scholar] [CrossRef]









| Parameters | Description |
|---|---|
| Feed type | Industrial wastewater |
| pH range | 1–11 |
| Membrane material | Polyether Sulphone |
| Transmembrane pressure (psi) | 60 |
| MWCO | 30 kDa |
| Area (m2) | 0.004209 |
| Metal Ions | Surfactant | CMC | Material of Membrane | Pore Size (kDa) | R (%) | References |
|---|---|---|---|---|---|---|
| Cd2+ | SDS | 8 mM | PS | 6 | 99 | [19] |
| Cd2+ (50 mg L−1) | SDS | 4 mmol L−1 | PES | 5, 10, 30 | 90 | [20] |
| Cd2+ (50 mg L−1) | SDS | 2.16 gL−1 | PS | 10 | >99 | [26] |
| Cu2+ (20 mg L−1) | SDS | polyacrylonitrile | 100, 300 | 98 | [30] | |
| Zn2+ | SDS | 8.3 mM | Amicone Regenerated cellulose | 3 and 10 | 99 | [31] |
| Zn2+, Cd2+ | SDS | 8.3 mM | Amicone Regenerated cellulose | varies | 98 ± 0.4 99 ± 0.4 | [18] |
| Cd2+, Zn2+ (50 mg L−1) | SDS | 2.15 G L−1 | PS | 6 | 1–4 mg/L | [21] |
| Ni2+, Co2+ (1 mM) | SDS | 7 mM | PS | 20 | <99 | [22] |
| Pb2+ Cd2+ | SDS TX-100 and NP12 SDS | 12.3 mM 1.37 mM and 1.37 mM 8.14 mmol L−1 | PES PES | 10 kDa 30 kDa | 99, 98.4, 98.7 99 | [32] This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sapkota, P.; Madduri, S.B.; Kommalapati, R.R. Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater. Water 2026, 18, 191. https://doi.org/10.3390/w18020191
Sapkota P, Madduri SB, Kommalapati RR. Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater. Water. 2026; 18(2):191. https://doi.org/10.3390/w18020191
Chicago/Turabian StyleSapkota, Prakriti, Sunith B. Madduri, and Raghava R. Kommalapati. 2026. "Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater" Water 18, no. 2: 191. https://doi.org/10.3390/w18020191
APA StyleSapkota, P., Madduri, S. B., & Kommalapati, R. R. (2026). Advanced Micellar-Enhanced Ultrafiltration for the Removal of Cadmium (Cd2+) from Wastewater. Water, 18(2), 191. https://doi.org/10.3390/w18020191

