Hydroxylamine-Assisted Reactivation of Salinity-Inhibited Partial Denitrification/Anammox Systems: Performance Recovery, Functional Microbial Shifts, and Mechanistic Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Wastewater Characteristics and Seeding Sludge
2.2. Reactor Configuration and Operational Strategy
2.3. In Situ Microbial Activity Assays
2.4. EPS Extraction and Fluorescence Characterisation
2.5. Chemical Analyses
2.6. Microbial Community Analysis
3. Results and Discussion
3.1. Effects of Hydroxylamine Exposure on Microbial Activities of Salinity-Inhibited PD/A Biomass
3.2. Long-Term Recovery of Nitrogen Removal Facilitated by Hydroxylamine Addition
3.2.1. Recovery Trajectories Under Different Hydroxylamine Dosages
3.2.2. Nitrogen Transformation Dynamics During Key Operational Phases
3.3. EPS Conversion Characteristics
3.4. Hydroxylamine-Induced Microbial Community Shifts in PD/A
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kartal, B.; Kuenen, J.G.; van Loosdrecht, M.C.M. Sewage Treatment with Anammox. Science 2010, 328, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Cao, S.; Zhang, H.; Li, X.; Peng, Y. Flexible Nitrite Supply Alternative for Mainstream Anammox: Advances in Enhancing Process Stability. Environ. Sci. Technol. 2020, 54, 6353–6364. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Du, R.; Peng, Y.; Li, B.; Wang, S. Novel Two Stage Partial Denitrification (PD)-Anammox Process for Tertiary Nitrogen Removal from Low Carbon/Nitrogen (C/N) Municipal Sewage. Chem. Eng. J. 2019, 362, 107–115. [Google Scholar] [CrossRef]
- Kim, H.-C.; Choi, W.J.; Chae, A.N.; Park, J.; Kim, H.J.; Song, K.G. Evaluating Integrated Strategies for Robust Treatment of High Saline Piggery Wastewater. Water Res. 2016, 89, 222–231. [Google Scholar] [CrossRef]
- Chen, Y.; He, H.; Liu, H.; Li, H.; Zeng, G.; Xia, X.; Yang, C. Effect of Salinity on Removal Performance and Activated Sludge Characteristics in Sequencing Batch Reactors. Bioresour. Technol. 2018, 249, 890–899. [Google Scholar] [CrossRef]
- Liu, M.; Li, Q.; Sun, H.; Jia, S.; He, X.; Li, M.; Zhang, X.-X.; Ye, L. Impact of Salinity on Antibiotic Resistance Genes in Wastewater Treatment Bioreactors. Chem. Eng. J. 2018, 338, 557–563. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Chen, X.; Tang, Y.; Nie, W.-B.; Yang, L.; Liu, Y.; Ni, B.-J. Impact of Hydrogen Sulfide on Anammox and Nitrate/Nitrite-Dependent Anaerobic Methane Oxidation Coupled Technologies. Water Res. 2024, 257, 121739. [Google Scholar] [CrossRef]
- Jin, R.-C.; Zheng, P.; Mahmood, Q.; Hu, B.-L. Osmotic Stress on Nitrification in an Airlift Bioreactor. J. Hazard. Mater. 2007, 146, 148–154. [Google Scholar] [CrossRef]
- Qu, Z.; Tan, C.; Wang, X.; Zhao, N.; Li, J. Deciphering Performance and Microbial Characterization of Marine Anammox Bacteria-Based Consortia Treating Nitrogen-Laden Hypersaline Wastewater: Inhibiting Threshold of Salinity. Bioresour. Technol. 2024, 393, 130170. [Google Scholar] [CrossRef]
- Jin, R.-C.; Yang, G.-F.; Yu, J.-J.; Zheng, P. The Inhibition of the Anammox Process: A Review. Chem. Eng. J. 2012, 197, 67–79. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Niu, Q.; Qi, W.; Li, Y.-Y. Characterization of Three Types of Inhibition and Their Recovery Processes in an Anammox UASB Reactor. Biochem. Eng. J. 2016, 109, 212–221. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Zhang, Z.-Z.; Guo, Q.; Chen, Q.-Q.; Jin, R.-C.; Jia, X.-Y. Variation in the Performance and Sludge Characteristics of Anaerobic Ammonium Oxidation Inhibited by Copper. Sep. Purif. Technol. 2015, 142, 108–115. [Google Scholar] [CrossRef]
- Wang, S.; Tian, Y.; Bi, Y.; Meng, F.; Qiu, C.; Yu, J.; Liu, L.; Zhao, Y. Recovery Strategies and Mechanisms of Anammox Reaction Following Inhibition by Environmental Factors: A Review. Environ. Res. 2024, 252, 118824. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-F.; Ni, W.-M.; Wu, K.; Wang, H.; Yang, B.-E.; Jia, X.-Y.; Jin, R.-C. The Effect of Cu(II) Stress on the Activity, Performance and Recovery on the Anaerobic Ammonium-Oxidizing (Anammox) Process. Chem. Eng. J. 2013, 226, 39–45. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Su, X.; Li, J.; Peng, Y.; Yuan, Y.; Wu, L.; Peng, Y. An Overlooked Effect of Hydroxylamine on Anammox Granular Sludge: Promoting Granulation and Boosting Activity. Sci. Total Environ. 2024, 921, 171176. [Google Scholar] [CrossRef]
- Xu, G.; Xu, X.; Yang, F.; Liu, S.; Gao, Y. Partial Nitrification Adjusted by Hydroxylamine in Aerobic Granules under High DO and Ambient Temperature and Subsequent Anammox for Low C/N Wastewater Treatment. Chem. Eng. J. 2012, 213, 338–345. [Google Scholar] [CrossRef]
- Soler-Jofra, A.; Pérez, J.; Van Loosdrecht, M.C.M. Hydroxylamine and the Nitrogen Cycle: A Review. Water Res. 2021, 190, 116723. [Google Scholar] [CrossRef]
- You, J.; Yu, B.; Liu, J. The Pivotal Role of Hydroxylamine in the Anammox-Based Processes: Mechanisms and Practical Applications. Chem. Eng. J. 2025, 515, 163562. [Google Scholar] [CrossRef]
- Van Der Star, W.R.L.; Van De Graaf, M.J.; Kartal, B.; Picioreanu, C.; Jetten, M.S.M.; Van Loosdrecht, M.C.M. Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Appl. Environ. Microbiol. 2008, 74, 4417–4426. [Google Scholar] [CrossRef]
- Feng, F.; Tang, X.; Qu, C.; Lu, X.; Liu, Z.; Tang, J.; Tang, C.-J.; Chai, L. Hydroxylamine Addition Enhances Fast Recovery of Anammox Activity Suffering Cr(VI) Inhibition. Bioresour. Technol. 2021, 329, 124920. [Google Scholar] [CrossRef]
- Bettazzi, E.; Caffaz, S.; Vannini, C.; Lubello, C. Nitrite Inhibition and Intermediates Effects on Anammox Bacteria: A Batch-Scale Experimental Study. Process Biochem. 2010, 45, 573–580. [Google Scholar] [CrossRef]
- Yang, J.-H.; Fu, J.-J.; Jia, Z.-Y.; Geng, Y.-C.; Ling, Y.-R.; Fan, N.-S.; Jin, R.-C. Microbial Response and Recovery Strategy of the Anammox Process under Ciprofloxacin Stress from Pure Strain and Consortia Perspectives. Environ. Int. 2024, 186, 108599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, S.; Ji, B.; Liu, Y. Towards Mainstream Deammonification of Municipal Wastewater: Partial Nitrification-Anammox versus Partial Denitrification-Anammox. Sci. Total Environ. 2019, 692, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhang, J.; Zeng, M.; Du, R.; Fan, X.; Cao, S. Adaptation of Freshwater Partial Denitrification/Anammox (PD/A) Granules to Low-Salt Conditions: Process Performance and Metabolic Insights. Chem. Eng. J. 2024, 493, 152592. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Wu, P.; Ma, L.; Chen, J.; Wang, C.; Li, X.; Liu, W.; Xu, L. Hydroxylamine Metabolism in Mainstream Denitrifying Ammonium Oxidation (DEAMOX) Process: Achieving Fast Start-up and Robust Operation with Bio-Augmentation Assistance under Ambient Temperature. J. Hazard. Mater. 2022, 421, 126736. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A New Efficient Method for Determining the Number of Components in PARAFAC Models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1926; Volume 6. [Google Scholar]
- Cao, S.; Tao, Y.; Cheng, Z.; Li, X.; Fan, X.; Du, R. Temperature-Driven Mineral Accumulation Triggers Irreversible Failure in a High-Strength CANDAN System. Chem. Eng. J. 2025, 522, 167941. [Google Scholar] [CrossRef]
- Lin, L.; Pratt, S.; Crick, O.; Xia, J.; Duan, H.; Ye, L. Salinity Effect on Freshwater Anammox Bacteria: Ionic Stress and Ion Composition. Water Res. 2021, 188, 116432. [Google Scholar] [CrossRef]
- Wong, J.W.C.; Kaur, G.; Mehariya, S.; Karthikeyan, O.P.; Chen, G. Food Waste Treatment by Anaerobic Co-Digestion with Saline Sludge and Its Implications for Energy Recovery in Hong Kong. Bioresour. Technol. 2018, 268, 824–828. [Google Scholar] [CrossRef]
- Pernetti, M.; Palma, L.D. Experimental Evaluation of Inhibition Effects of Saline Wastewater on Activated Sludge. Environ. Technol. 2005, 26, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Yu, D.; Qiu, Y.; Chen, G.; Tian, Y.; Wang, Y. A Novel Process of Salt Tolerance Partial Denitrification and Anammox (ST-PDA) for Treating Saline Wastewater. Bioresour. Technol. 2022, 345, 126472. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Yu, D.; Wang, X.; Du, S.; Wang, J.; Gong, X.; Du, Y.; Zhao, J. Performance and Microbial Structure of Partial Denitrification in Response to Salt Stress: Achieving Stable Nitrite Accumulation with Municipal Wastewater. Bioresour. Technol. 2020, 311, 123559. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Feng, Z.-T.; Zhou, J.-M.; Sun, Y.-J.; Zhang, Q.-Q. Regulation Mechanism of Hydrazine and Hydroxylamine in Nitrogen Removal Processes: A Comprehensive Review. Chemosphere 2024, 347, 140670. [Google Scholar] [CrossRef]
- Du, R.; Cao, S.; Wang, S.; Niu, M.; Peng, Y. Performance of Partial Denitrification (PD)-ANAMMOX Process in Simultaneously Treating Nitrate and Low C/N Domestic Wastewater at Low Temperature. Bioresour. Technol. 2016, 219, 420–429. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, Y.; Wang, C.; Li, J.; Wu, P.; Ma, L.; Wang, Y.; Wang, Y.; Da, F.; Liu, W.; et al. Enhancement of Nitrite Production via Addition of Hydroxylamine to Partial Denitrification (PD) Biomass: Functional Genes Dynamics and Enzymatic Activities. Bioresour. Technol. 2020, 318, 124274. [Google Scholar] [CrossRef]
- He, S.; Yang, W.; Li, W.; Zhang, Y.; Qin, M.; Mao, Z. Impacts of Salt Shocking and the Selection of a Suitable Reversal Agent on Anammox. Sci. Total Environ. 2019, 692, 602–612. [Google Scholar] [CrossRef]
- Xiong, X.; Li, Y.; Yang, X.; Huang, Z.; Wang, D.; Li, Z. Insights into the Response of Anammox Sludge to the Individual and Combined Stress of Neodymium and Salinity and the Role of Hydroxylamine Regulation. J. Environ. Chem. Eng. 2023, 11, 110536. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, L.; Chen, Y.; Wang, Y.; Li, X.; Li, L.; Cao, W.; Zhang, Y. Dual-Edged Effects and Mechanisms of Hydroxylamine in Partial Denitrification-Anaerobic Ammonium Oxidation System. Environ. Res. 2023, 235, 116664. [Google Scholar] [CrossRef]
- Harper, W.F.; Terada, A.; Poly, F.; Le Roux, X.; Kristensen, K.; Mazher, M.; Smets, B.F. The Effect of Hydroxylamine on the Activity and Aggregate Structure of Autotrophic Nitrifying Bioreactor Cultures. Biotech Bioeng. 2009, 102, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, D.; Wang, P.; Yu, Z.; Yuan, S.; Xia, L.; Meng, F. The Counteraction of Anammox Community to Long-Term Nitrite Stress: Crucial Roles of Rare Subcommunity. Sci. Total Environ. 2022, 822, 153062. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Kuenen, J.G.; Jetten, M.S.M. Key Physiology of Anaerobic Ammonium Oxidation. Appl. Environ. Microbiol. 1999, 65, 3248–3250. [Google Scholar] [CrossRef] [PubMed]
- Irisa, T.; Hira, D.; Furukawa, K.; Fujii, T. Reduction of Nitric Oxide Catalyzed by Hydroxylamine Oxidoreductase from an Anammox Bacterium. J. Biosci. Bioeng. 2014, 118, 616–621. [Google Scholar] [CrossRef]
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric Oxide and Nitrous Oxide Turnover in Natural and Engineered Microbial Communities: Biological Pathways, Chemical Reactions, and Novel Technologies. Front. Microbio. 2012, 3, 372. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Zhao, N.; Qiu, Y.; Qu, Z.; Li, J. Response of Marine Anammox Bacteria to Long-Term Hydroxylamine Stress: Nitrogen Removal Performance and Microbial Community Dynamics. Bioresour. Technol. 2024, 393, 130159. [Google Scholar] [CrossRef]
- Wang, T.; Guo, J.; Song, Y.; Lian, J.; Li, H.; Lu, C.; Han, Y.; Hou, Y. Efficient Nitrogen Removal in Separate Coupled-System of Anammox and Sulfur Autotrophic Denitrification with a Nitrification Side-Branch under Substrate Fluctuation. Sci. Total Environ. 2019, 696, 133929. [Google Scholar] [CrossRef]
- Chen, J.; Gu, B.; LeBoeuf, E.J.; Pan, H.; Dai, S. Spectroscopic Characterization of the Structural and Functional Properties of Natural Organic Matter Fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, M.; Ahn, Y.; Jung, Y.; Nam, S.-N.; Choi, I.; Kang, J.-W. Characteristics of Intracellular Algogenic Organic Matter and Its Reactivity with Hydroxyl Radicals. Water Res. 2018, 144, 13–25. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Yang, Q.; Liu, X.; Li, X.; Li, B.; Zhang, L.; Peng, Y. Stratification of Extracellular Polymeric Substances (EPS) for Aggregated Anammox Microorganisms. Environ. Sci. Technol. 2017, 51, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Guo, J.; Xiao, S.; Chen, Z.; Song, Y.; Ren, X. Rapid of Cultivation Dissimilatory Perchlorate Reducing Granular Sludge and Characterization of the Granulation Process. Bioresour. Technol. 2019, 276, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Mal, J.; Nancharaiah, Y.V.; Maheshwari, N.; Van Hullebusch, E.D.; Lens, P.N.L. Continuous Removal and Recovery of Tellurium in an Upflow Anaerobic Granular Sludge Bed Reactor. J. Hazard. Mater. 2017, 327, 79–88. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Zheng, X.; Li, X.; Feng, L. Short-Chain Fatty Acid Production from Different Biological Phosphorus Removal Sludges: The Influences of PHA and Gram-Staining Bacteria. Environ. Sci. Technol. 2013, 47, 2688–2695. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Chen, G.; Peng, Y. Exploring the Optimized Strategy in the Nitritation-Anammox Biofilm Process for Treating Low Ammonium Wastewater. Bioresour. Technol. 2021, 319, 124113. [Google Scholar] [CrossRef]
- Liu, B.; Mao, Y.; Bergaust, L.; Bakken, L.R.; Frostegård, Å. Strains in the Genus Thauera Exhibit Remarkably Different Denitrification Regulatory Phenotypes. Environ. Microbiol. 2013, 15, 2816–2828. [Google Scholar] [CrossRef]
- Cao, S.; Lan, Y.; Fan, X.; Xu, X.; Du, R.; Peng, Y.; Makinia, J. Selective Enrichment of Partial Denitrifying Bacteria Enabling High Nitrite Production under Stepwise Elevated Salinity: Sludge Granulation and Metagenomic Mechanisms. ACS EST Water 2025, 5, 1955–1965. [Google Scholar] [CrossRef]
- Cao, S.; Li, B.; Du, R.; Ren, N.; Peng, Y. Nitrite Production in a Partial Denitrifying Upflow Sludge Bed (USB) Reactor Equipped with Gas Automatic Circulation (GAC). Water Res. 2016, 90, 309–316. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Wang, W.; Wang, Y.; Zhou, L.; Jiang, B.; Op den Camp, H.J.M.; Risgaard-Petersen, N.; Schwark, L.; Peng, Y.; et al. Hotspots of Anaerobic Ammonium Oxidation at Land–Freshwater Interfaces. Nat. Geosci. 2013, 6, 103–107. [Google Scholar] [CrossRef]
- Li, C.; Du, R.; Liu, Q.; Fan, J.; Peng, Y. Expansive Microbial Metabolic Versatility and Spatial Biodiversity of Anammox Coupling with Denitrification Granular Sludge under Different Feeding Strategies. Chem. Eng. J. 2024, 480, 148183. [Google Scholar] [CrossRef]
- Du, R.; Cao, S.; Li, X.; Wang, J.; Peng, Y. Efficient Partial-Denitrification/Anammox (PD/A) Process through Gas-Mixing Strategy: System Evaluation and Microbial Analysis. Bioresour. Technol. 2020, 300, 122675. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Shi, R.; Li, L.; Xia, S.; Ning, J.; Xu, W. Performance Optimization and Nitrogen Removal Mechanism of Up-Flow Partial Denitrification/Anammox Process. J. Environ. Manag. 2023, 348, 119191. [Google Scholar] [CrossRef] [PubMed]






| Solution | Concentration (g/L) | |
|---|---|---|
| Mineral substances | MgSO4·7H2O | 0.14 |
| CaCl2·2H2O | 0.14 | |
| KH2PO4 | 0.03 | |
| Trace element I | EDTA·2Na | 5.78 |
| FeSO4·7H2O | 9.15 | |
| Trace element II | EDTA·2Na | 17.36 |
| ZnSO4·7H2O | 0.43 | |
| CuSO4·5H2O | 0.25 | |
| NaMoO4·2H2O | 0.22 | |
| NiCl2·6H2O | 0.19 | |
| H3BO4 | 0.014 | |
| MnCl2·4H2O | 0.99 | |
| CoCl2·6H2O | 0.24 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, J.; Su, Q.; Cao, S.; Fan, X.; Du, R. Hydroxylamine-Assisted Reactivation of Salinity-Inhibited Partial Denitrification/Anammox Systems: Performance Recovery, Functional Microbial Shifts, and Mechanistic Insights. Water 2026, 18, 111. https://doi.org/10.3390/w18010111
Wang J, Su Q, Cao S, Fan X, Du R. Hydroxylamine-Assisted Reactivation of Salinity-Inhibited Partial Denitrification/Anammox Systems: Performance Recovery, Functional Microbial Shifts, and Mechanistic Insights. Water. 2026; 18(1):111. https://doi.org/10.3390/w18010111
Chicago/Turabian StyleWang, Jinyan, Qingliang Su, Shenbin Cao, Xiaoyan Fan, and Rui Du. 2026. "Hydroxylamine-Assisted Reactivation of Salinity-Inhibited Partial Denitrification/Anammox Systems: Performance Recovery, Functional Microbial Shifts, and Mechanistic Insights" Water 18, no. 1: 111. https://doi.org/10.3390/w18010111
APA StyleWang, J., Su, Q., Cao, S., Fan, X., & Du, R. (2026). Hydroxylamine-Assisted Reactivation of Salinity-Inhibited Partial Denitrification/Anammox Systems: Performance Recovery, Functional Microbial Shifts, and Mechanistic Insights. Water, 18(1), 111. https://doi.org/10.3390/w18010111
