Seasonal Changes of Extreme Precipitation in Relation to Circulation Conditions in the Sudetes Mountains
Abstract
1. Introduction
2. Materials and Methods
- Ws—zonal index.
- Wp—meridional index.
- P40, P65—mean air pressure at the parallels of 40° N and 65° N, calculated with a 5° step for the 0–35° E zone.
- P35, P0—mean air pressure at the meridians of 0° and 35° E, calculated with a 5° step for the 40–65° N zone.
3. Results
3.1. Seasonal Changes in Extreme Precipitation Conditions
3.1.1. Spring
3.1.2. Summer
3.1.3. Autumn
3.1.4. Winter
3.2. Circulation Conditions and Their Impact on RX1
4. Discussion
5. Conclusions
- Changes in extreme precipitation conditions do not indicate homogeneous directions and are strongly influenced by various geographic factors, such as longitude, altitude, and northern or southern slope exposition. They also depend on the season and applied indices.
- Multiannual changes in precipitation totals and heavy precipitation are, to a certain extent, affected by fluctuations in circulation conditions. They determine both the direction of changes and their spatial variability in the Sudetes Mountains.
- Autumn is the season with the most pronounced positive trends of extreme precipitation defined by RX1, RX3, and RX5. Such changes can indicate that heavy rainfall can become a crucial factor in this season, especially in its early phase. These conditions can be confirmed by a flood episode that occurred in September 2024 in Central and Eastern Europe.
- Differences in the changes in extreme precipitation between the Western and Eastern Sudetes in particular seasons confirm distinct precipitation regimes for these two regions. This is particularly evident in spring and summer when more pronounced negative (spring) or positive (summer) trends were observed in the western areas.
- The distribution of heavy precipitation on the northern and southern slopes of the Sudetes varies depending on different circulation patterns in particular seasons. This is reflected in the predominance of heavy precipitation under the northern and eastern circulation in the spring-summer period (especially in the northern regions) and a high frequency of such events under the southern, western, and northwestern types in autumn and winter (particularly in the southern areas).
- The crucial role of cyclonic N and NE circulation, often related to the Mediterranean low-pressure systems, is reflected in the values and the percentage of maximum seasonal RX1, especially in the northern areas. Such conditions particularly refer to the warm season, when extreme rainfall is most frequent and disastrous flood events occur most often.
- The results of this research can be applied to further investigations, such as the development of new regionalization methods related to extreme precipitation issues in morphologically varied regions. Consequently, the outcomes can serve as a source of information for planning activities aimed at mitigating the effects of extreme precipitation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LO | Lowlands (≤150 m asl) |
| MF | Mountain foreland (151–300 m asl) |
| LMZ | Lower mountain zone (301–500 m asl) |
| MMZ | Middle mountain zone (501–1000 m asl) |
| SM | Summits (>1000 m asl) |
| RR | Precipitation totals |
| RX1 | Maximum one-day precipitation totals |
| RX3 | Maximum consecutive three-day precipitation totals |
| RX5 | Maximum consecutive five-day precipitation totals |
| %R90p | Fraction of precipitation totals exceeding the 90th percentile threshold, calculated for days with precipitation ≥ 1 mm (very wet days) |
| %R95p | Fraction of precipitation totals exceeding the 90th percentile threshold, calculated for days with precipitation ≥ 1 mm (extremely wet days) |
References
- Economic Losses from Weather- and Climate-Related Extremes in Europe. European Environment Agency. 2023. Available online: https://www.eea.europa.eu/en/analysis/indicators/economic-losses-from-climate-related (accessed on 24 June 2024).
- Majewski, W. Urban flash flood in Gdańsk, 2001. Ann. Wars. Univ. Life Sci. 2008, 39, 129–137. [Google Scholar] [CrossRef]
- Knozová, G. Heavy rains in Brno Region (The Czech Republic). Environ. Socio-Econ. Stud. 2015, 3, 2–21. [Google Scholar] [CrossRef]
- Palán, L.; Matyáš, M.; Vál’ková, M.; Kovačka, V.; Pažourková, E.; Punčochář, P. Accessing Insurance Flood Losses Using a Catastrophe Model and Climate Change Scenarios. Climate 2022, 10, 67. [Google Scholar] [CrossRef]
- Ruin, I.; Creutin, J.-D.; Anquetin, S.; Gruntfest, E.; Lutoff, C. Human vulnerability to flash floods: Addressing physical exposure and behavioural questions. In Flood Risk Management: Research and Practice; Samuels, P., Huntington, S., Allsop, W., Harrop, J., Eds.; Taylor & Francis Group: London, UK, 2009; pp. 1005–1012. [Google Scholar]
- Arnell, N.; Gosling, S. The impacts of climate change on river flood risk at the global scale. Clim. Change 2014, 134, 387–401. [Google Scholar] [CrossRef]
- Błażejczyk, K. Bioklimatyczne Uwarunkowania Turystyki w Polsce (Bioclimtic Principles of Recreation and Tourism in Poland); Prace Geograficzne IGiPZ PAN: Warsaw, Poland, 2004; p. 293. [Google Scholar]
- Schröter, D.; Zebisch, M.; Grothmann, T. Climate Change in Germany—Vulnerability and Adaptation of climate sensitive Sectors. Klimastatusbericht Des DWD 2005, 2005, 44–56. [Google Scholar]
- Kundzewicz, Z.W.; Hov, Ø.; Okruszko, T. (Eds.) Zmiany klimatu i ich wpływ na wybrane sektory w Polsce (Climate Changes and Their Impact on Selected Sectors in Poland); Instytut Środowiska Rolniczego i Leśnego Polskiej Akademii Nauk, Ridero IT Publishing: Poznań, Poland, 2017; p. 274. [Google Scholar]
- Climate Change Adaptation Plans in 44 Polish Cities; Summary Report; Instytut Ochrony Środowiska: Warsaw, Poland, 2018; p. 30.
- Migoń, P. (Ed.) Wyjątkowe zdarzenia przyrodnicze na Dolnym Śląsku i ich skutki (Exceptional Natural Events and Their Effects in the Lower Silesia); Rozprawy Naukowe; Instytutu Geografii i Rozwoju Regionalnego Uniwersytet Wrocławski: Wrocław, Poland, 2010; Volume 14, p. 319. [Google Scholar]
- Ligenza, P.; Tokarczyk, T.; Adynkiewicz-Piragas, M. (Eds.) Przebieg i skutki wybranych powodzi w dorzeczu Odry od XIX wieku do czasów współczesnych; IMGW-PIB: Warsaw, Poland, 2021; p. 132. [Google Scholar]
- Dubicki, A.; Malinowska-Małek, J.; Strońska, K. Flood hazards in the upper and middle Odra River basin—A short review over the last century. Limnologica 2005, 35, 123–131. [Google Scholar] [CrossRef]
- Bednorz, E.; Wrzesiński, D.; Tomczyk, A.M.; Jasik, D. Classification of Synoptic Conditions of Summer Floods in Polish Sudeten Mountains. Water 2019, 11, 1450. [Google Scholar] [CrossRef]
- Dubicki, A.; Słota, H.; Zieliński, J. (Eds.) Dorzecze Odry. Monografia powodzi—Lipiec 1997; IMGW: Warsaw, Poland, 1999; p. 241. [Google Scholar]
- Kostecki, S.; Banasiak, R. The Catastrophe of the Niedów Dam—The Causes of the Dam’s Breach, Its Development, and Consequences. Water 2021, 13, 3254. [Google Scholar] [CrossRef]
- Franczak, P.; Listwan-Franczak, K. Występowanie powodzi błyskawicznych w miastach położonych na przedpolu gór na przykładzie Bogatyni (Sudety) (The occurrence of flash floods in the cites situated in the forland of the mountains, for example of Bogatynia (Sudeten)). In Hydrologia Zlewni Zurbanizowanych; Hajduk, E., Kaznowska, E., Eds.; Monografie Komitetu Gospodarki Wodnej Polskiej Akademii Nauk, 39: Warsaw, Poland, 2016; pp. 125–137. [Google Scholar]
- AON. Central Europe Floods of September 2024. Event Response. 2024. Available online: https://img.clients.aonunited.com/Web/Aon5/%7Bc0a15226-066f-4c48-ab34-3753611f47d1%7D_impact-forecasting-flooding-CentralEurope-response-sep-2024.pdf?utm_source=slipcase&utm_medium=affiliate&utm_campaign=slipcase (accessed on 31 January 2025).
- Kundzewicz, Z.W.; Jania, J.A. Extreme Hydro-meteorological Events and their Impacts. From the Global down to the Regional Scale. Pr. I Stud. Geogr. 2007, 75, 9–24. [Google Scholar]
- Marosz, M.; Wójcik, R.; Biernacik, D.; Jakusik, E.; Pilarski, M.; Owczarek, M.; Miętus, M. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu Klimat (Poland’s climate variability 1951–2008. KLIMAT project’s results). Pr. I Stud. Geogr. 2011, 47, 51–66. [Google Scholar]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Łupikasza, E.; Małarzewski, Ł. Precipitation change. In Climate Change in Poland; Falarz, M., Ed.; Springer Science and Business Media B.V.: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar] [CrossRef]
- Bodri, L.; Cermak, V.; Kresl, M. Trends in Precipitation Variability: Prague (The Czech Republic). Clim. Change 2005, 72, 151–170. [Google Scholar] [CrossRef]
- Kveton, V.; Zak, M. Extreme precipitation events in the Czech Republic in the context of climate change. Adv. Geosci. 2008, 14, 251–255. [Google Scholar]
- Brázdil, R.; Zahradnícek, P.; Pišoft, P.; Štepánek, P.; Belínová, M.; Dobrovolný, P. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor. Appl. Climatol. 2012, 110, 17–34. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradnícek, P.; Dobrovolný, P.; Rehor, J.; Trnka, M.; Lhotka, O.; Štěpánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Łupikasza, E.; Niedźwiedź, T.; Pinskwar, I.; Ruiz-Villanueva, V.; Kundzewicz, Z.W. Observed Changes in Air Temperature and Precipitation and Relationship between them, in the Upper Vistula Basin. In Flood Risk in the Upper Vistula Basin; Kundzewicz, Z., Stoffel, M., Niedźwiedź, T., Wyżga, B., Eds.; GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2016; pp. 155–187. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Clim. 2018, 135, 1517–1530. [Google Scholar] [CrossRef]
- Błażejczyk, K. Sezonowa i wieloletnia zmienność niektórych elementów klimatu w Tatrach i Karkonoszach w latach 1951–2015 (Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts over the 1951–2015 period). Przegl. Geogr. 2019, 91, 41–62. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z. Observed changes in precipitation totals in Poland. Geografie 2019, 124, 237–264. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska-Senoner, A.E.; Ranzi, R.; Banasik, K. Long-Term Changes of Hydrological Variables in a Small Lowland Watershed in Central Poland. Water 2019, 11, 564. [Google Scholar] [CrossRef]
- Brázdil, R.; Chromá, K.; Dobrovolný, P.; Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Clim. 2008, 29, 223–242. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradnícek, P.; Dobrovolný, P.; Štepánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Clim. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; European Commission, Institute for Environment and Sustainability: Luxembourg, 2008; p. 82. [Google Scholar]
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Rannov, S., Neubert, M., Eds.; Advances in Global Change Research, 58; Springer: Dordrecht, The Netherlands, 2014; pp. 17–30. [Google Scholar]
- Nilsen, I.B.; Fleig, A.K.; Tallaksen, M.; Hisdal, H. Recent trends in monthly temperature and precipitation patterns in Europe. In Hydrology in a Changing World: Environmental and Human Dimensions, Proceedings of the FRIEND-Water, Montpellier, France, 7–10 October 2014; Ben Ammar, S., Taupin, J.D., Zouari, K., Eds.; IAHS Publication: Wallingford, UK, 2014; pp. 132–137. [Google Scholar]
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Danilovich, I.; Castro, F.D.; Dumitrescu, A.; Labuda, M.; et al. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 2022, 42, 225–249. [Google Scholar] [CrossRef]
- Szwed, M. Variability of precipitation in Poland under climate change. Theor. Appl. Clim. 2018, 135, 1003–1015. [Google Scholar] [CrossRef]
- Rulfová, Z.; Kyselý, J. Trends of Convective and Stratiform Precipitation in the Czech Republic, 1982–2010. Adv. Meteorol. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Beranová, R.; Kyselý, J. Trends of precipitation characteristics in the Czech Republic over 1961–2012, their spatial patterns and links to temperature and the North Atlantic Oscillation. Int. J. Clim. 2017, 38, E596–E606. [Google Scholar] [CrossRef]
- Franke, J.; Goldberg, V.; Freydank, E.; Eichelmann, U. Statistical analysis of regional climate trends in Saxony, Germany. Clim. Res. 2004, 27, 145–150. [Google Scholar] [CrossRef]
- Hänsel, S.; Petzold, S.; Matschullat, J. Precipitation trend analysis for Central Eastern Germany. In Bioclimatology and Natural Hazards, Proceedings of the International Scientific Conference, Poľana nad Detvou, Slovakia, 17–20 September 2007; Střelcová, K., Škvarenina, J., Blaženec, M., Eds.; Springer: Malacky, Slovakia, 2007; pp. 29–38. [Google Scholar]
- Hänsel, S.; Matschullat, J. Monthly trends of daily heavy precipitation indicators from lowland to mountainous regions in Saxony, Germany. In Proceedings of the Conference: Sustainable Development and Bioclimate, Stará Lesna, Slovakia, 5–9 October 2009; Pribullová, A., Bičárová, S., Eds.; Slovak Bioclimatological Society: Stará Lesna, Slovakia, 2009; pp. 22–23. [Google Scholar]
- Hänsel, S.; Matschullat, J. Precipitation variability and changes in Saxony between 1901 and 2012. In Proceedings of the International Scientific Conference Environmental Changes and Adaptation Strategies, Skalica, Slovakia, 9–11 September 2013; Šiška, B., Nejedlík, P., Hájková, L., Kožnarová, V., Eds.; Available online: http://cbks.cz/SbornikSkalice2013/pdf/H%C3%A4nsel1.pdf (accessed on 14 October 2025).
- Kalbarczyk, R.; Kalbarczyk, E. Risk of Natural Hazards Caused by Extreme Precipitation in Poland in 1951–2020. Water 2024, 16, 1705. [Google Scholar] [CrossRef]
- Beranová, R.; Kyselý, J. Large-scale heavy precipitation over the Czech Republic and its link to atmospheric circulation in CORDEX regional climate models. Theor. Appl. Clim. 2024, 155, 4737–4748. [Google Scholar] [CrossRef]
- Lünich, K.; Pluntke, T.; Niemand, C.; Adynkiewicz-Piragas, M.; Zdralewicz, I.; Otop, I.; Miszuk, B.; Kryza, J.; Lejcuś, I.; Strońska, M. Lausitzer Neiße—Charakteristik und Klima der Region (Lausitzer Neisse—Characteristics and Climate of the Region); Sachsisches Landesamt fur Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 75. [Google Scholar]
- Pluntke, T.; Schwarzak, S.; Kuhn, K.; Lunich, K.; Adynkiewicz-Piragas, M.; Otop, I.; Miszuk, B. Climate analysis as a basis for a sustainable water management at the Lusatian Neisse. Meteorol. Hydrol. Water Manag. 2016, 4, 3–11. [Google Scholar] [CrossRef]
- AR5 Synthesis Report: Climate Change 2014; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014; p. 151. Available online: https://archive.ipcc.ch/report/ar5/syr/ (accessed on 24 July 2024).
- Regions 2020. The Climate Change Challenge for European Regions; European Commission, Directorate-General Regional Policy: Brussels, Belgium, 2009; p. 27. Available online: https://ec.europa.eu/regional_policy/sources/studies/regions2020/regions2020_climat.pdf (accessed on 24 July 2024).
- Kundzewicz, Z.W.; Radziejowski, M.; Pińskwar, I. Precipitation extremes in the changing climate of Europe. Cilm. Res. 2006, 31, 51–58. [Google Scholar] [CrossRef]
- Schwarzak, S.; Hänsel, S.; Matschullat, J. Projected changes in extreme precipitation characteristics for Central Eastern Germany (21st century, model-based analysis). Int. J. Clim. 2015, 35, 2724–2734. [Google Scholar] [CrossRef]
- Zeder, J.; Fischer, E.M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 2020, 29, 100266. [Google Scholar] [CrossRef]
- Nationaler Klimareport. Klima—Gestern, Heute und in der Zukunft; DWD: Nationaler Klimareport; 6. überarbeitete Auflage, Deutscher Wetterdienst: Offenbach am Main, Germany, 2022; p. 53. Available online: https://www.dwd.de/DE/leistungen/nationalerklimareport/download_report.pdf (accessed on 23 July 2024).
- Malinowska, M. Extreme Precipitation in Poland in the Years 1951–2010. OP Conf. Ser. Earth Environ. Sci. 2017, 95, 062012. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Clim. 2019, 135, 773–787. [Google Scholar] [CrossRef]
- Van Maanem, N.; Theokritoff, E.; Menke, I.; Schleussner, C.-F. Climate Impacts in the Czech Republic. Clim. Anal. 2021, 37. Available online: https://www.klimazaloba.cz/wp-content/uploads/2021/03/FINAL_impact-profile-Czech-Republic.pdf (accessed on 23 July 2024).
- Szwed, M.; Graczyk, D.; Pińskwar, I.; Kundzewicz, Z.W. Projections of climate extreme in Poland. Geogr. Pol. 2007, 80, 191–202. [Google Scholar]
- Pińskwar, I.; Choryński, A. Projections of Precipitation Changes in Poland. In Climate Change in Poland; Falarz, M., Ed.; Springer Science and Business Media B.V.: Cham, Switzerland, 2021; pp. 529–544. [Google Scholar]
- Ghazi, B.; Przybylak, R.; Pospieszyńska, A. Projection of climate change impacts on extreme temperature and precipitation in Central Poland. Sci. Rep. 2023, 13, 18772. [Google Scholar] [CrossRef]
- Łupikasza, E. Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Phys. Chem. Earth Parts A/B/C 2010, 35, 448–455. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Composite circulation index of weather extremes (the example for Poland). Meteorol. Z. 2013, 22, 551–559. [Google Scholar] [CrossRef]
- Nowosad, M.; Stach, A. Relation between extensive extreme precipitation in Poland and atmospheric circulation. Quaest. Geogr. 2014, 33, 115–129. Available online: http://hdl.handle.net/10593/15931 (accessed on 23 July 2024). [CrossRef]
- Niedźwiedź, T.; Łupikasza, E.; Pińskwar, I.; Kundzewicz, Z.W.; Stoffel, M.; Małarzewski, Ł. Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theor. Appl. Clim. 2015, 119, 273–284. [Google Scholar] [CrossRef]
- Młyński, D.; Cebulska, M.; Wałęga, A. Trends, Variability, and Seasonality of Maximum Annual Daily Precipitation in the Upper Vistula Basin, Poland. Atmosphere 2018, 9, 313. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Czekierda, D.; Palarz, A.; Sulikowska, A. Extreme precipitation events in the Polish Carpathians and their synoptic determinants. Időjárás 2018, 122, 145–158. [Google Scholar] [CrossRef]
- Twardosz, R.; Niedźwiedź, T. Influence of synoptic situations on the precipitation in Kraków (Poland). Int. J. Clim. 2001, 21, 467–481. [Google Scholar] [CrossRef]
- Twardosz, R.; Cebulska, M.; Guzik, I. The Variability of Maximum Daily Precipitation and the Underlying Circulation Conditions in Kraków, Southern Poland. Water 2023, 15, 3772. [Google Scholar] [CrossRef]
- Świątek, M. Advection of air masses responsible for extreme rainfall totals in Poland, as exemplified by catastrophic floods in Racibórz (July 1997) and Dobczyce (May 2010). Acta Agrophys. 2013, 20, 481–494. [Google Scholar]
- Szalińska, W.; Otop, I.; Tokarczyk, T. Precipitation extremes during flooding in the Odra River Basin in May–June 2010. Meteorol. Hydrol. Water Manag. 2014, 2, 13–20. [Google Scholar] [CrossRef]
- Wrona, B. Meteorologiczne i morfologiczne uwarunkowania ekstremalnych opadów atmosferycznych w dorzeczu górnej i środkowej Odry (Meteorological and Morphological Conditions of Extreme Precipitation in the Upper and Middle Odra River Basin); Materiały badawcze IMGW, Meteorologia: Warsaw, Poland, 2008; p. 120. [Google Scholar]
- Rehor, J.; Brazdil, R.; Lhotka, O.; Trnka, M.; Balek, J.; Stepanek, P.; Zahradnicek, P. Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere 2021, 12, 1536. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Plavcová, E. Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere 2021, 12, 87. [Google Scholar] [CrossRef]
- Brázdil, R.; Faturová, D.; Šulc Michalková, M.; Řehoř, J.; Caletka, M.; Zahradníček, P. Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period. Nat. Hazards Earth Syst. Sci. 2024, 24, 3663–3682. [Google Scholar] [CrossRef]
- Kasprzak, M.; Migoń, P. Historical and recent floods in the West Sudetes, Central Europe—The geomorphological dimension. Z. Geomorph. Suppl. Iss. 2015, 59, 73–97. [Google Scholar] [CrossRef]
- Schmuck, A. Klimat Sudetów (Climate of the Sudetes). Probl. Zagospod. Ziem Górskich 1969, 5, 93–154. [Google Scholar]
- Sobik, M.; Błaś, M.; Migała, K.; Godek, M.; Nasiółkowski, T. Klimat (Climate). In Przyroda Karkonoskiego Parku Narodowego; Knapik, R., Raj, A., Eds.; PN Jelenia Góra, DIMOGRAF: Bielsko-Biała, Poland, 2013; pp. 147–186. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. Int. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Guijarro, J.A. Homogenization of Climatic Series with Climatol. Ver. 3.1.1. 2018. Available online: https://www.researchgate.net/profile/Jose-Guijarro-2/publication/325203476_Homogenization_of_climatic_series_with_Climatol/links/5afda3fea6fdcc3a5a90bd5b/Homogenization-of-climatic-series-with-Climatol.pdf (accessed on 14 October 2024).
- Guijarro, J.A. Climatol: Climate Tools (Series Homogenization and Derived Products). R Package Ver. 3.1.2. 2019. Available online: https://cran.r-project.org/web/packages/climatol/index.html (accessed on 10 September 2024).
- Coll, J.; Domonkos, P.; Guijarro, J.; Curley, M.; Rustemeier, E.; Aguilar, E.; Walsh, S.; Sweeney, J. Application of homogenization methods for Ireland’s monthly precipitation records: Comparison of break detection results. Int. J. Clim. 2020, 40, 6169–6188. [Google Scholar] [CrossRef]
- Kuya, E.K.; Gjelten, H.M.; Tveito, O.E. Homogenization of Norwegian monthly precipitation series for the period 1961–2018. Adv. Sci. Res. 2020, 19, 73–80. [Google Scholar] [CrossRef]
- Annex VI: Climatic Impact-driver and Extreme Indices. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 2205–2214. [CrossRef]
- Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. In Climate Data and Monitoring; WCDMP-No. 72; WMO: Geneva, Switzerland, 2009; p. 55.
- Indices of Daily Temperature and Precipitation Extremes. Available online: https://www.ecad.eu/documents/ETCCDMIndicesComparison.pdf (accessed on 16 October 2025).
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; Giorgi, F.; Thomas, R.K.; Kendon, E.J.; Tank, A.M.G.K.; et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Change 2016, 137, 201–216. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Lityński, J. Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski (A numerical classification of circulation types and weather types for Poland). Pr. PIHM 1969, 97, 3–14. [Google Scholar]
- Pianko-Kluczyńska, K. Nowy kalendarz typów cyrkulacji atmosfery według J. Lityńskiego (New calendar of atmosphere circulation types according to J. Lityński). Wiadomości Meteorol. Hydrol. Gospod. Wodnej 2007, I, 65–85. [Google Scholar]
- Pianko-Kluczyńska, K.; Ustrnul, Z. Calendar of the circulation conditions, according to the Lityński classification. 2022; Unpublished work; obtained directly from the authors. [Google Scholar]
- Kaszewski, B. Wykorzystanie Typologii Cyrkulacji Atmosfery w Badaniach Klimatologicznych (The Use of Typology of Atmospheric Circulation in Climatological Research). Rocznik FG UG 2001, 6, 13–26. [Google Scholar]
- Nowosad, M. O problemach związanych z wyznaczaniem typów cyrkulacji Lityńskiego (Problems related to the determination of Litynski atmospheric circulation types). Przegl. Geogr. 2019, 159, 49–66. [Google Scholar] [CrossRef]
- Kučerová, M.; Huth, R. Changes of atmospheric circulation in central Europe and their influence on climate trends in the Czech Republic. Theor. Appl. Climatol. 2009, 96, 57–68. [Google Scholar] [CrossRef]
- Błaś, M.; Sobik, M. Osobliwości klimatu Karkonoszy i Gór Izerskich (Climatic peculiarities of the Izera and Giant Mountains (Western Sudetes)). In Rola Stacji Terenowych w Badaniach Geograficznych; Krzemień, K., Trepińska, J., Bokwa, A., Eds.; IGIGP UJ: Cracow, Poland, 2005; pp. 109–121. [Google Scholar]
- Kwiatkowski, J. Opady rzeczywiste w Sudetach (Actual precipitations in the Sudetes Mountains). Przegl. Geofiz. 1978, 23, 35–44. [Google Scholar]
- Degirmendžić, J.; Kożuchowski, K. Niże śródziemnomorskie jako czynnik klimatu Polski (Mediterranean Cyclones as a Factor of the Climate of Poland); Wydawnictwo UŁ: Łódź, Poland, 2016; p. 166. [Google Scholar]
- Klein Tank, A.M.G.; Können, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946−99. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Karagiannidis, A.; Karacostas, T.; Maheras, P.; Makrogiannis, T. Trends and seasonality of extreme precipitation characteristics related to mid-latitude cyclones in Europe. Adv. Geosci. 2009, 20, 39–43. [Google Scholar] [CrossRef]
- Casanueva, A.; Rodríguez-Puebla, C.; Frías, M.D.; González-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef]
- Łupikasza, E. Seasonal patterns and consistency of extreme precipitation trends in Europe, December 1950 to February 2008. Clim. Res. 2017, 72, 217–237. [Google Scholar] [CrossRef]
- Skowera, B.; Kopcińska, J.; Bokwa, A. Changes in the structure of days with precipitation in southern Poland in 1971–2010. Időjárás 2016, 120, 365–381. [Google Scholar]
- Pińskwar, I.; Kundzewicz, Z.W.; Choryński, A. Projections of changes in heavy precipitation in the northern foothills of the Tatra Mountains. Meteorol. Hydrol. Water Manag. 2017, 5, 21–30. [Google Scholar] [CrossRef]
- Wibig, J.; Jędruszkiewicz, J. Changes in the Intra-Annual Precipitation Regime in Poland from 1966 to 2024. Atmosphere 2025, 16, 813. [Google Scholar] [CrossRef]
- Martinkova, M.; Hanel, M. Evaluation of relations between extreme precipitation and temperature in observational time series from the Czech Republic. Adv. Meteorol. 2016, 2016, 2975380. [Google Scholar] [CrossRef]
- Łupikasza, E.; Hänsel, S.; Matschullat, J. Regional and seasonal variability of extreme precipitation trends in southern Poland and central-eastern Germany 1951–2006. Int. J. Climatol. 2011, 31, 2249–2271. [Google Scholar] [CrossRef]
- Kyselý, J. Trends in heavy precipitation in the Czech Republic over 1961–2005. Int. J. Climatol. 2009, 29, 1745–1758. [Google Scholar] [CrossRef]
- Marosz, M.; Wójcik, R.; Pilarski, M.; Miętus, M. Extreme daily precipitation totals in Poland during summer: The role of regional atmospheric circulation. Clim. Res. 2013, 56, 245–259. [Google Scholar] [CrossRef]
- Daňhelka, J. The August 2002 flood in the Czech Republic. Meteorological caused and hydrological response. Geografie 2004, 109, 84–92. [Google Scholar] [CrossRef]
- Šír, M.; Tesař, M.; Fišák, J.; Lichner, L. Extreme floods in the Krkonoše Mts. (Czech Republic) in summer 2002 and 2006. In Hydro-Meteorological Extremes, Floods and Droughts; 2008; Available online: http://ksh.fgg.uni-lj.si/bled2008/cd_2008/02_Hydro-meteorological%20extremes,%20floods%20and%20droughts/right.html (accessed on 24 July 2025).











| Region | Acronym | Altitude [m asl] | Poland [N] | Czechia [S] |
|---|---|---|---|---|
| Lowlands | LO | ≤150 | 5 | - |
| Mountain foreland | MF | 151–300 | 16 | - |
| Lower mountain zone | LMZ | 301–500 | 24 | 18 |
| Middle mountain zone | MMZ | 501–1000 | 4 | 9 |
| Summits | SM | >1000 | 1 | - |
| No. | Acronym | Description | Unit |
|---|---|---|---|
| 1 | RR | Precipitation totals | mm |
| 2 | RX1 | Maximum one-day precipitation totals | mm |
| 3 | RX3 | Maximum consecutive three-day precipitation totals | mm |
| 4 | RX5 | Maximum consecutive five-day precipitation totals | mm |
| 5 | %R90p | Fraction of precipitation totals exceeding the 90th percentile threshold, calculated for days with precipitation ≥1 mm (very wet days) | % |
| 6 | %R95p | Fraction of precipitation totals exceeding the 95th percentile threshold, calculated for days with precipitation ≥1 mm (very wet days) (extremely wet days) | % |
| Index | Parameter | LO | MF | LMZ | MMZ | SM | ||
|---|---|---|---|---|---|---|---|---|
| N | N | N | S | N | S | N | ||
| RR | Mean [mm] | 129.0 | 150.5 | 180.8 | 169.8 | 199.4 | 222.2 | 264.4 |
| Intensity of changes (Q) | −0.52 | −0.71 to −0.49 | −1.41 to −0.70 | −1.05 to −0.12 | −0.76 to −0.67 | −1.37 to −0.65 | −3.05 | |
| RX1 | Mean (Mean maximum) [mm] | 20.8 (47.6) | 23.0 (61.4) | 25.8 (66.5) | 23.2 (64.6) | 27.3 (66.5) | 27 (66.8) | 30.3 (92.6) |
| Intensity of changes (Q) | −0.11 | −0.17 to −0.13 | −0.17 to −0.12 | −0.19 to 0.13 | −0.13 | −0.16 | −0.32 | |
| RX3 | Mean (Mean maximum) [mm] | 30.9 (72.1) | 34.7 (82.5) | 39.9 (96.4) | 35.0 (79.6) | 42.1 (96.6) | 44.1 (106.0) | 51.5 (163.4) |
| Intensity of changes (Q) | −0.15 | −0.28 to −0.18 | −0.28 to −0.16 | −0.36 to 0.18 | −0.21 to −0.18 | −0.28 | −0.69 | |
| RX5 | Mean (mean maximum) [mm] | 35.6 (78.7) | 40.5 (95.2) | 46.9 (112.3) | 41.5 (93) | 49.8 (108.8) | 53.1 (122.9) | 61.7 (190.3) |
| Intensity of changes (Q) | −0.18 | −0.25 | −0.32 | −0.35 to 0.24 | . | −0.27 | −0.79 | |
| %R90p | Mean (Mean maximum) [%] | 30.8 (64.5) | 30.5 (65.0) | 32.8 (64.7) | 30.7 (61.6) | 33.0 (61.2) | 30.5 (61.0) | 25.7 (63.3) |
| Intensity of changes (Q) | −0.19 | −0.30 to −0.23 | −0.25 to −0.24 | 0.34 | . | 0.22 | −0.61 | |
| %R95p | Mean (Mean maximum) [%] | 17.6 (62.5) | 18.2 (52.3) | 20.3 (56.0) | 18.3 (50.6) | 19.6 (53.0) | 18.4 (51.4) | 12.7 (54.9) |
| Intensity of changes (Q) | −0.05 | −0.03 | −0.22 to 0.19 | −0.26 to 0.29 | . | . | −0.28 | |
| Index | Parameter | LO | MF | LMZ | MMZ | SM | ||
|---|---|---|---|---|---|---|---|---|
| N | N | N | S | N | S | N | ||
| RR | Mean [mm] | 230.0 | 253.5 | 295.1 | 263.7 | 321.9 | 317.7 | 364.0 |
| Intensity of changes (Q) | −1.23 to 1.57 | −1.12 | 0.89 | . | −1.13 | −2.61 | ||
| RX1 | Mean (Mean maximum) [mm] | 39.8 (102.1) | 40.7 (103.5) | 45.8 (124.4) | 38.6 (109.8) | 46.9 (150.0) | 43.8 (131.6) | 51.4 (149.7) |
| Intensity of changes (Q) | . | 0.18 to 0.23 | . | . | . | −0.29 to 0.15 | −0.47 | |
| RX3 | Mean (Mean maximum) [mm] | 55.8 (145.9) | 60.1 (173.0) | 68.5 (199.0) | 55.7 (166.1) | 71.6 (288.6) | 66.3 (212.4) | 80.8 (339.6) |
| Intensity of changes (Q) | . | . | . | 0.21 | . | −0.40 to −0.23 | −0.91 | |
| RX5 | Mean (Mean maximum) [mm] | 54.5 (166.1) | 69.5 (189.4) | 79.8 (233.5) | 65.5 (182.5) | 84.1 (324.0) | 77.6 (235.4) | 92.9 (350.0) |
| Intensity of changes (Q) | . | . | . | −0.24 to 0.29 | . | −0.53 | −1.04 | |
| %R90p | Mean (Mean maximum) [%] | 35.4 (71.7) | 35.3 (70.2) | 35.8 (71.0) | 35.1 (70.1) | 33.8 (75.8) | 33.7 (67.8) | 30.6 (72.6) |
| Intensity of changes (Q) | 0.30 | 0.20 | 0.23 to 0.30 | . | −0.24 to 0.25 | −0.36 | ||
| %R95p | Mean (Mean maximum) [%] | 22.6 (53.9) | 22.7 (62.3) | 22.8 (61.7) | 22.6 (61.4) | 21.3 (68.5) | 21.7 (58.5) | 17.2 (52.5) |
| Intensity of changes (Q) | . | 0.27 to 0.31 | . | 0.20 to 0.26 | . | 0.21 | −0.36 | |
| Index | Parameter | LO | MF | LMZ | MMZ | SM | ||
|---|---|---|---|---|---|---|---|---|
| N | N | N | S | N | S | N | ||
| RR | Mean [mm] | 125.8 | 143.3 | 171.4 | 172.3 | 193.7 | 239.8 | 256.7 |
| Intensity of changes (Q) | 0.53 | 0.86 | . | |||||
| RX1 | Mean (Mean maximum) [mm] | 21.6 (58.7) | 23.8 (59.1) | 26.9 (68.1) | 24.1 (61.8) | 29.7 (76.5) | 30.7 (69.2) | 30.8 (78.9) |
| Intensity of changes (Q) | . | 0.16 | 0.12 to 0.18 | −0.10 | 0.11 | 0.16 to 0.26 | −0.20 | |
| RX3 | Mean (Mean maximum) [mm] | 31.0 (81.8) | 35.1 (88.3) | 40.8 (106.0) | 38.2 (109.4) | 45.2 (123.7) | 51.0 (118.0) | 50.9 (129.5) |
| Intensity of changes (Q) | . | 0.17 to 0.20 | 0.17 to 0.28 | −0.20 | 0.17 | 0.16 to 0.39 | −0.26 | |
| RX5 | Mean (Mean maximum) [mm] | 37.0 (89.9) | 42.0 (101.1) | 49.1 (122.7) | 47.4 (125.0) | 54.4 (139.5) | 64.1 (138.4) | 63.8 (139.1) |
| Intensity of changes (Q) | . | 0.20 to 0.23 | 0.22 to 0.26 | . | . | 0.29 to 0.36 | . | |
| %R90p | Mean (Mean maximum) [%] | 30.2 (68.4) | 31.5 (67.3) | 33.4 (67.7) | 31.2 (62.5) | 32.7 (72.4) | 32.8 (61.2) | 30.7 (70.7) |
| Intensity of changes (Q) | . | . | 0.21 to 0.29 | 0.19 to 0.29 | . | 0.23 to 0.28) | −0.24 | |
| %R95p | Mean (Mean maximum) [%] | 18.3 (57.1) | 19.2 (57.6) | 20.9 (56.9) | 18.4 (54.1) | 20.2 (60.0) | 21.1 (55.4) | 17.8 (50.6) |
| Intensity of changes (Q) | . | . | 0.21 to 0.27 | 0.21 | . | 0.21 to 0.32 | −0.14 | |
| Index | Parameter | LO | MF | LMZ | MMZ | SM | ||
|---|---|---|---|---|---|---|---|---|
| N | N | N | S | N | S | N | ||
| RR | Mean [mm] | 86.3 | 103.7 | 136.2 | 165.4 | 161.0 | 263.5 | 292.2 |
| Intensity of changes (Q) | 0.65 | 0.62 to 0.77 | 0.56 to 0.84 | −0.61 to 0.77 | . | −0.79 | . | |
| RX1 | Mean (Mean maximum) [mm] | 11.2 (27.9) | 13.0 (30.7) | 16.1 (37.9) | 18.9 (38.7) | 17.9 (37.4) | 27.0 (57.2) | 24.1 (49.8) |
| Intensity of changes (Q) | 0.06 to 0.09 | −0.06 to 0.09 | −0.08 to 0.12 | 0.08 | 0.09 | 0.07 | . | |
| RX3 | Mean (Mean maximum) [mm] | 16.9 (35.9) | 20.3 (48.3) | 26.2 (61.6) | 31.3 (64.3) | 29.1 (52.8) | 47.5 (103.9) | 46.3 (94.2) |
| Intensity of changes (Q) | −0.07 to 0.11 | −0.06 | −0.19 | −0.22 to 0.11 | . | . | . | |
| RX5 | Mean (Mean maximum) [mm] | 20.9 (46.9) | 25.7 (62.2) | 32.7 (76.5) | 38.8 (83.1) | 37.2 (69.5) | 59.8 (136.0) | 61.3 (112.1) |
| Intensity of changes (Q) | 0.13 | . | −0.17 to 0.16 | −0.29 to −0.18 | −0.13 | −0.16 | . | |
| %R90p | Mean (Mean maximum) [%] | 24.8 (56.4) | 26.2 (58.3) | 27.7 (59.7) | 27.2 (57.9) | 27.9 (60.3) | 29.1 (62.8) | 31.2 (71.6) |
| Intensity of changes (Q) | 0.27 | −0.04 to 0.34 | 0.22 to 0.24 | −0.19 | . | . | . | |
| %R95p | Mean (Mean maximum) [%] | 14.4 (44.2) | 15.9 (49.9) | 16.9 (48.3) | 15.9 (47.2) | 17.3 (44.2) | 17.2 (48.9) | 19.7 (48.5) |
| Intensity of changes (Q) | 0.22 | −0.10 to 0.32 | 0.13 to 0.25 | −0.15 | . | . | . | |
| Anticyclonic | Cyclonic | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Spring | N | E | S | W | O | N | E | S | W | O |
| LO | 5.1 | 6.1 | 3.9 | 3.8 | 1.5 | 11.7 | 12.7 | 10.7 | 10.0 | 4.5 |
| MF | 6.2 | 7.3 | 4.4 | 3.8 | 1.6 | 12.9 | 13.6 | 11.6 | 11.1 | 5.5 |
| LMZ-N | 6.9 | 8.5 | 5.3 | 4.2 | 2.2 | 14.4 | 15.1 | 13.0 | 13.3 | 6.4 |
| LMZ-S | 5.9 | 6.9 | 5.5 | 4.4 | 1.7 | 12.9 | 12.2 | 13.9 | 13.7 | 5.8 |
| MMZ-N | 7.6 | 9.3 | 6.0 | 4.3 | 2.2 | 14.6 | 15.7 | 14.3 | 14.4 | 7.2 |
| MMZ-S | 7.7 | 8.2 | 6.3 | 5.5 | 1.9 | 17.0 | 14.1 | 16.3 | 17.9 | 6.8 |
| SM | 11.1 | 12.7 | 5.6 | 3.8 | 2.7 | 19.2 | 17.7 | 15.4 | 16.0 | 9.0 |
| Summer | N | E | S | W | O | N | E | S | W | O |
| LO | 10.8 | 12.0 | 8.0 | 7.9 | 4.1 | 23.0 | 19.4 | 17.2 | 17.6 | 10.4 |
| MF | 11.7 | 12.5 | 8.7 | 9.1 | 4.7 | 24.9 | 21.1 | 18.1 | 17.6 | 11.1 |
| LMZ-N | 13.2 | 14.3 | 10.8 | 10.7 | 5.7 | 29.1 | 24.3 | 20.3 | 19.9 | 12.1 |
| LMZ-S | 11.5 | 12.7 | 11.9 | 10.7 | 5.8 | 22.3 | 19.5 | 19.5 | 18.1 | 10.9 |
| MMZ-N | 14.6 | 16.2 | 11.1 | 11.4 | 6.2 | 32.0 | 26.6 | 20.6 | 20.2 | 12.5 |
| MMZ-S | 12.8 | 13.2 | 10.8 | 11.5 | 6.9 | 29.7 | 24.4 | 21.2 | 20.4 | 13.5 |
| SM | 16.6 | 18.2 | 11.4 | 10.5 | 7.9 | 31.9 | 29.9 | 20.2 | 18.7 | 14.6 |
| Autumn | N | E | S | W | O | N | E | S | W | O |
| LO | 3.6 | 5.6 | 3.1 | 3.3 | 1.4 | 11.1 | 11.2 | 12.6 | 10.3 | 4.0 |
| MF | 4.1 | 6.2 | 3.4 | 3.2 | 1.4 | 12.4 | 12.2 | 13.6 | 11.3 | 4.5 |
| LMZ-N | 4.9 | 7.1 | 3.7 | 3.4 | 1.6 | 14.8 | 14.0 | 15.1 | 13.7 | 5.1 |
| LMZ-S | 4.0 | 5.5 | 3.9 | 3.5 | 1.6 | 13.6 | 11.3 | 15.7 | 14.9 | 5.4 |
| MMZ-N | 5.9 | 8.2 | 4.1 | 3.7 | 1.6 | 15.6 | 15.7 | 17.7 | 15.6 | 5.9 |
| MMZ-S | 5.8 | 6.9 | 4.8 | 4.8 | 1.9 | 20.6 | 13.9 | 19.2 | 21.9 | 6.6 |
| SM | 7.5 | 9.1 | 5.7 | 3.9 | 2.6 | 17.4 | 16.4 | 20.4 | 17.2 | 7.5 |
| Winter | N | E | S | W | O | N | E | S | W | O |
| LO | 2.6 | 2.9 | 2.2 | 2.0 | 0.7 | 6.8 | 4.7 | 6.1 | 7.1 | 2.7 |
| MF | 3.2 | 3.5 | 2.2 | 2.1 | 0.9 | 8.4 | 5.3 | 6.8 | 8.3 | 3.1 |
| LMZ-N | 4.0 | 4.5 | 2.5 | 2.3 | 1.0 | 11.1 | 6.2 | 9.1 | 11.5 | 3.6 |
| LMZ-S | 3.7 | 3.3 | 3.9 | 3.6 | 0.9 | 12.4 | 5.7 | 12.6 | 14.9 | 4.9 |
| MMZ-N | 4.6 | 4.8 | 2.6 | 2.5 | 1.1 | 11.8 | 7.4 | 12.4 | 13.9 | 4.1 |
| MMZ-S | 6.0 | 4.3 | 4.9 | 5.4 | 1.2 | 19.4 | 8.3 | 17.7 | 22.7 | 7.2 |
| SM | 8.7 | 8.4 | 4.4 | 4.1 | 1.6 | 18.8 | 11.1 | 15.0 | 17.2 | 6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Otop, I.; Miszuk, B. Seasonal Changes of Extreme Precipitation in Relation to Circulation Conditions in the Sudetes Mountains. Water 2026, 18, 103. https://doi.org/10.3390/w18010103
Otop I, Miszuk B. Seasonal Changes of Extreme Precipitation in Relation to Circulation Conditions in the Sudetes Mountains. Water. 2026; 18(1):103. https://doi.org/10.3390/w18010103
Chicago/Turabian StyleOtop, Irena, and Bartłomiej Miszuk. 2026. "Seasonal Changes of Extreme Precipitation in Relation to Circulation Conditions in the Sudetes Mountains" Water 18, no. 1: 103. https://doi.org/10.3390/w18010103
APA StyleOtop, I., & Miszuk, B. (2026). Seasonal Changes of Extreme Precipitation in Relation to Circulation Conditions in the Sudetes Mountains. Water, 18(1), 103. https://doi.org/10.3390/w18010103

