Groundwater Suitability Mapping in Jimma and Borena Zones of Ethiopia Using GIS and Remote Sensing Techniques
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Source and Analysis
2.3. Criteria Thematic Layer Preparation
2.4. Weight Assignment and Reclassification
2.5. Weighted Overlay Analysis (WOA)
3. Results
3.1. Groundwater Suitability Mapping
3.1.1. Jimma Zone Results
3.1.2. Borena Zone Results
3.1.3. Groundwater Suitability Map Validation
4. Discussion
- (1)
- Subjectivity in the AHP: The Analytic Hierarchy Process (AHP) involves subjective pairwise comparisons and weight assignments, which could introduce bias. Future research could benefit from a larger panel of experts or more objective criteria.
- (2)
- Lineament detection accuracy: The accuracy of detecting lineaments in complex terrains may be limited by the resolution of the remote sensing data. Future studies could enhance accuracy by integrating geophysical surveys (e.g., seismic or electrical resistivity).
- (3)
- Data resolution: The resolution of some data sources, such as the SRTM DEM and the Landsat imagery, may have adversely influenced results, especially in areas with fine-scale variations. Higher-resolution data like LiDAR could improve suitability maps.
- (4)
- Detailed socio-economic factors: Future studies could integrate these data for a more holistic view of groundwater potential and sustainability.
- (5)
- Validation process limitations: The validation relied on borehole data, which may not be uniformly distributed or fully representative. Future studies should consider using a more diverse set of validation data, such as geophysical surveys or hydrological models, to enhance reliability.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Bose, A.; Mandal, G. Modeling and mapping geospatial distribution of groundwater potential zones in Darjeeling Himalayan region of India using analytical hierarchy process and GIS technique. Model. Earth Syst. Environ. 2022, 8, 1563–1584. [Google Scholar] [CrossRef]
- Mechal, A.; Wagner, T.; Birk, S. Recharge variability and sensitivity to climate: The example of Gidabo River Basin, Main Ethiopian Rift. J. Hydrol. Reg. Stud. 2015, 4, 644–660. [Google Scholar] [CrossRef]
- Gumula-Kawecka, A.; Jaworska-Szulc, B.; Jefimow, M. Climate change impact on groundwater resources in sandbar aquifers in southern Baltic coast. Sci. Rep. 2024, 14, 11828. [Google Scholar] [CrossRef]
- Buvaneshwari, S.; Riotte, J.; Sekhar, M.; Kumar, M.M.; Sharma, A.K.; Duprey, J.L.; Audry, S.; Giriraja, P.; Praveenkumarreddy, Y.; Moger, H.; et al. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer. Sci. Total Environ. 2017, 579, 838–847. [Google Scholar] [CrossRef]
- El-Hokayem, L.; De Vita, P.; Usman, M.; Link, A.; Conrad, C. Mapping potentially groundwater-dependent vegetation in the Mediterranean biome using global geodata targeting site conditions and vegetation characteristics. Sci. Total Environ. 2023, 898, 166397. [Google Scholar] [CrossRef]
- Kawo, N.S.; Hordofa, A.T.; Karuppannan, S. Performance evaluation of GPM-IMERG early and late rainfall estimates over Lake Hawassa catchment, Rift Valley Basin, Ethiopia. Arab. J. Geosci. 2021, 14, 256. [Google Scholar] [CrossRef]
- Fentahun, A.; Mechal, A.; Karuppannan, S. Hydrochemistry and quality appraisal of groundwater in Birr River Catchment, Central Blue Nile River Basin, using multivariate techniques and water quality indices. Environ. Monit. Assess. 2023, 195, 655. [Google Scholar] [CrossRef]
- Alshehri, F.; Abd El-Hamid, H.T.; Mohamed, A. Mapping coastal groundwater potential zones using remote sensing based AHP model in Al Qunfudhah region along Red Sea, Saudi Arabia. Heliyon 2024, 10, e28186. [Google Scholar] [CrossRef] [PubMed]
- Diriba, D.; Karuppannan, S.; Takele, T.; Husein, M. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Heliyon 2024, 10, e25532. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Zhang, Y. Identifying Major Factors Affecting Groundwater Change in the North China Plain with Grey Relational Analysis. Water 2014, 6, 1581–1600. [Google Scholar] [CrossRef]
- Shube, H.; Kebede, S.; Azagegn, T.; Nedaw, D.; Haji, M.; Karuppannan, S. Estimating Groundwater Flow Velocity in Shallow Volcanic Aquifers of the Ethiopian Highlands Using a Geospatial Technique. Sustainability 2023, 15, 14490. [Google Scholar] [CrossRef]
- Kawo, N.S.; Karuppannan, S. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. J. Afr. Earth Sci. 2018, 147, 300–311. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Zhang, Y.; Wu, X.; Zhang, C. Analysis of the Hydrogeochemical Characteristics and Origins of Groundwater in the Changbai Mountain Region via Inverse Hydrogeochemical Modeling and Unsupervised Machine Learning. Water 2024, 16, 1853. [Google Scholar] [CrossRef]
- Tamesgen, Y.; Atlabachew, A.; Jothimani, M. Groundwater potential assessment in the Blue Nile River catchment, Ethiopia, using geospatial and multi-criteria decision-making techniques. Heliyon 2023, 9, e17616. [Google Scholar] [CrossRef]
- Fallatah, O.; Khattab, M.R. Evaluation of Groundwater Quality and Suitability for Irrigation Purposes and Human Consumption in Saudi Arabia. Water 2023, 15, 2352. [Google Scholar] [CrossRef]
- Ghosh, D.; Mandal, M.; Banerjee, M.; Karmakar, M. Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundw. Sustain. Dev. 2020, 11, 100419. [Google Scholar] [CrossRef]
- Ibrahim, A.; Wayayok, A.; Shafri, H.Z.M.; Toridi, N.M. Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review. J. Hydrol. X 2024, 23, 100175. [Google Scholar] [CrossRef]
- Mulu, G.A.; Kerebih, M.S.; Hailu, D.A. Groundwater perspective zone mapping coupled with remote sensing, GIS, AHP, and MIF models: A case study of the Gorezen watershed, Ethiopia. Water Pract. Technol. 2024, 19, 2774–2798. [Google Scholar] [CrossRef]
- Abate, S.G.; Amare, G.Z.; Adal, A.M. Geospatial analysis for the identification and mapping of groundwater potential zones using RS and GIS at Eastern Gojjam, Ethiopia. Groundw. Sustain. Dev. 2022, 19, 100824. [Google Scholar] [CrossRef]
- Campbell, F.; Tricco, A.C.; Munn, Z.; Pollock, D.; Saran, A.; Sutton, A.; Sutton, A.; White, H.; Khalil, H. Mapping reviews, scoping reviews, and evidence and gap maps (EGMs): The same but different—The “Big Picture” review family. Syst. Rev. 2023, 12, 45. [Google Scholar] [CrossRef]
- Rehman, A.; Islam, F.; Tariq, A.; Islam, I.U.; J, D.B.; Bibi, T.; Ahmad, W.; Waseem, L.A.; Karuppannan, S.; Al-Ahmadi, S. Groundwater potential zone mapping using GIS and Remote Sensing based models for sustainable groundwater management. Geocarto Int. 2024, 39, 2306275. [Google Scholar] [CrossRef]
- Thakur, J.K.; Singh, S.K.; Ekanthalu, V.S. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Appl. Water Sci. 2017, 7, 1595–1608. [Google Scholar] [CrossRef]
- Getahun, B. Groundwater Potential Zone Assessment Using Remote Sensing, Geographical Information System (GIS), and Analytical Hierarchy Process (AHP) Techniques in Fogera Woreda, South Gondar Zone, Ethiopia. Qeios 2023. [Google Scholar] [CrossRef]
- Bhadran, A.; Girishbai, D.; Jesiya, N.P.; Gopinath, G.; Krishnan, R.G.; Vijesh, V.K. A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosyst. Geoenviron. 2022, 1, 100093. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.-D.; Chenini, I.; Tarhouni, J. Using Analytical Hierarchy Process and Multi-Influencing Factors to Map Groundwater Recharge Zones in a Semi-Arid Mediterranean Coastal Aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Shinde, S.P.; Barai, V.N.; Gavit, B.K.; Kadam, S.A.; Atre, A.A.; Pande, C.B.; Radwan, N.; Elkhrachy, I. Assessment of groundwater potential zone mapping for semi-arid environment areas using AHP and MIF techniques. Environ. Sci. Eur. 2024, 36, 87. [Google Scholar] [CrossRef]
- Melese, T.; Belay, T. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Glob. Chall. 2022, 6, 2100068. [Google Scholar] [CrossRef]
- Tolche, A.D. Groundwater potential mapping using geospatial techniques: A case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol. Ecol. Landsc. 2021, 5, 65–80. [Google Scholar] [CrossRef]
- Aklilu, T.; Sahilu, G.; Ambelu, A. Vulnerability Assessment and Protection Zone Delineation for Water Supply Schemes in the Upper Awash Subbasin, Ethiopia, Sub-Saharan Africa. Environ. Health Insights 2024, 18, 11786302241258349. [Google Scholar] [CrossRef]
- Sallwey, J.; Schlick, R.; Bonilla Valverde, J.P.; Junghanns, R.; Vásquez López, F.; Stefan, C. Suitability Mapping for Managed Aquifer Recharge: Development of Web-Tools. Water 2019, 11, 2254. [Google Scholar] [CrossRef]
- Pavelic, P.; Giordano, M.; Keraita, B.N.; Ramesh, V.; Rao, T. Groundwater Availability and Use in Sub-Saharan Africa: A Review of 15 Countries; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2012. [Google Scholar] [CrossRef]
- Megahed, H.A. GIS-based assessment of groundwater quality and suitability for drinking and irrigation purposes in the outlet and central parts of Wadi El-Assiuti, Assiut Governorate, Egypt. Bull. Natl. Res. Cent. 2020, 44, 187. [Google Scholar] [CrossRef]
- Lee, S.; Hyun, Y.; Lee, S.; Lee, M.-J. Groundwater Potential Mapping Using Remote Sensing and GIS-Based Machine Learning Techniques. Remote Sens. 2020, 12, 1200. [Google Scholar] [CrossRef]
- Hani, H.M.; El Din, M.M.N.; Khalifa, A.; Elalfy, E. Development of suitability map for managed aquifer recharge: Case study, West Delta, Egypt. AQUA-Water Infrastruct. Ecosyst. Soc. 2023, 72, 868–884. [Google Scholar] [CrossRef]
- Lee, S.; Kaown, D.; Koh, E.H.; Ko, K.S.; Lee, K.K. Delineation of groundwater quality locations suitable for target end-use purposes through deep neural network models. J. Environ. Qual. 2021, 50, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.P.; Sun, C.C.; Suk, H.; Wang, S.W.; Chen, J.S. A Machine Learning Approach for Spatial Mapping of the Health Risk Associated with Arsenic-Contaminated Groundwater in Taiwan’s Lanyang Plain. Int. J. Environ. Res. Public Health 2021, 18, 11385. [Google Scholar] [CrossRef] [PubMed]
- Aigbokhan, O.J.; Essien, N.E.; Ofordu, C.S.; Falana, A.R.; Adedoyin, E.D. Analytical Hierarchical Process (AHP) Techniques and Geospatial Technologies for Groundwater Potential Zone Mapping. J. Sci. Res. Rep. 2022, 28, 30–49. [Google Scholar] [CrossRef]
- Simonovich, S.; Florczak, K.L. Re-Envisioning Evidence Gap Maps With Qualitative Research. Nurs. Sci. Q. 2018, 31, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.M.; Kanyerere, T.; Jovanovic, N.; Goldin, J. Investigating the knowledge gap in research on climate and land use change impacts on water resources, with a focus on groundwater resources in South Africa: A bibliometric analysis. Water SA 2023, 49, 3. [Google Scholar] [CrossRef]
- Nigussie, W.; Hailu, B.T.; Azagegn, T. Mapping of groundwater potential zones using sentinel satellites (−1 SAR and -2A MSI) images and analytical hierarchy process in Ketar watershed, Main Ethiopian Rift. J. Afr. Earth Sci. 2019, 160, 103632. [Google Scholar] [CrossRef]
- Mathewos, Y.; Abate, B.; Dadi, M.; Mathewos, M. Evaluation of the groundwater prospective zone by coupling hydro-meteorological and geospatial evidence in Wabe River Catchment Omo Gibe River Basin, Ethiopia. Water Cycle 2024, 5, 37–58. [Google Scholar] [CrossRef]
- Soliman, K.M.A.; Amin, D.; Bekhit, H.M.; Hafiz, M.G.E.-R. Estimating natural groundwater recharge taking into consideration temporal and spatial variability for arid unconfined aquifer. Water Sci. 2024, 38, 359–377. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Amiri, M.; Amen, E.M.; Salem, A.; Ali, Z.F.; Awd, A.; Lóczy, D.; Ghzal, M. Enhancing groundwater vulnerability assessment for improved environmental management: Addressing a critical environmental concern. Environ. Sci. Pollut. Res. 2024, 31, 19185–19205. [Google Scholar] [CrossRef] [PubMed]
- Subbarayan, S.; Thiyagarajan, S.; Karuppannan, S.; Panneerselvam, B. Enhancing groundwater vulnerability assessment: Comparative study of three machine learning models and five classification schemes for Cuddalore district. Environ. Res. 2024, 242, 117769. [Google Scholar] [CrossRef] [PubMed]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Trends of Climate Change and Variability in Three Agro-Ecological Settings in Central Ethiopia: Contrasts of Meteorological Data and Farmers’ Perceptions. Climate 2020, 8, 121. [Google Scholar] [CrossRef]
- Taye, G.; Kaba, M.; Woyessa, A.; Deressa, W.; Simane, B.; Kumie, A.; Berhane, G. Modeling effect of climate variability on malaria in Ethiopia. Ethiop. J. Health Dev. 2015, 29, 137–196. [Google Scholar]
- USGS. Earth Explorer. 2024. Available online: https://earthexplorer.usgs.gov/ (accessed on 28 February 2025).
- University of East Anglia, Climatic Research Unit; Harris, I.C.; Jones, P.D.; Osborn, T. CRU TS4.04: Climatic Research Unit (CRU) Time-Series (TS) Version 4.04 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2019). Centre for Environmental Data Analysis, 2020. Available online: https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9 (accessed on 28 February 2025).
- Fienen, M.N.; Arshad, M. The International Scale of the Groundwater Issue. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–48. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, S.; Mondal, P. Groundwater suitability assessment based on water quality index and hydrochemical characterization of Suri Sadar Sub-division, West Bengal. Ecol. Inform. 2021, 64, 101335. [Google Scholar] [CrossRef]
- Chidambaram, S.; PMV, V.; Venkatramanan, S.; Nepolian, M.; Pradeep, K.; Panda, B.; Thivya, C.; Thilagavathi, R. Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environ. Res. 2022, 204, 111729. [Google Scholar] [CrossRef]
- Russo, T.A.; Fisher, A.T.; Lockwood, B.S. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Ground Water 2015, 53, 389–400. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rusteberg, B.; Gogu, R.C.; Lobo Ferreira, J.P.; Sauter, M. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J. Environ. Manag. 2012, 99, 61–75. [Google Scholar] [CrossRef]
- Narany, T.S.; Ramli, M.F.; Fakharian, K.; Aris, A.Z. A GIS-index integration approach to groundwater suitability zoning for irrigation purposes. Arab. J. Geosci. 2016, 9, 502. [Google Scholar] [CrossRef]
- Ali, S.; Verma, S.; Agarwal, M.B.; Islam, R.; Mehrotra, M.; Deolia, R.K.; Kumar, J.; Singh, S.; Mohammadi, A.A.; Raj, D.; et al. Groundwater quality assessment using water quality index and principal component analysis in the Achnera block, Agra district, Uttar Pradesh, Northern India. Sci. Rep. 2024, 14, 5381. [Google Scholar] [CrossRef]
- Dars, R.; Qureshi, A.L.; Jamali, M.A.; Memon, H.A.S.; Kori, S.M.; Oad, S. Subsurface groundwater aquifer mapping and quality characterization in Matiari district, Sindh, Pakistan. Environ. Monit. Assess. 2022, 195, 22. [Google Scholar] [CrossRef] [PubMed]
- Karakus, C.B. Groundwater potential assessment based on GIS-based Best-Worst Method (BWM) and Step-Wise Weight Assessment Ratio Analysis (SWARA) Method. Environ. Sci. Pollut. Res. 2023, 30, 31851–31880. [Google Scholar] [CrossRef]
- Hagos, Y.G.; Andualem, T.G. Geospatial and multi-criteria decision approach of groundwater potential zone identification in Cuma sub-basin, Southern Ethiopia. Heliyon 2021, 7, e07963. [Google Scholar] [CrossRef]
- Ahmed, A.; El Ammawy, M.; Hewaidy, A.G.; Moussa, B.; Abdel Hafz, N.; El Abd, E.S. Mapping of lineaments for groundwater assessment in the Desert Fringes East El-Minia, Eastern Desert, Egypt. Environ. Monit. Assess. 2019, 191, 556. [Google Scholar] [CrossRef] [PubMed]
- Al-Mayahi, H.M.; Al-Abadi, A.M.; Fryar, A.E. Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: A case study of the Dammam aquifer (middle of Iraq). Environ. Sci. Pollut. Res. 2021, 28, 13736–13751. [Google Scholar] [CrossRef]
- Dhaloiya, A.; Singh, J.P.; Malik, A.; Singh, M.C.; Kumar, A. Spatio-temporal trends in long-term seasonal groundwater level of South-western Punjab using non-parametric statistical tests. Environ. Sci. Pollut. Res. 2024, 31, 37610–37651. [Google Scholar] [CrossRef] [PubMed]
- Raheja, H.; Goel, A.; Pal, M. An evaluation of groundwater quality and its suitability for drinking and irrigation uses under the GIS framework. Water Pract. Technol. 2022, 17, 2259–2277. [Google Scholar] [CrossRef]
- Sangadi, P.; Kuppan, C.; Ravinathan, P. Effect of hydro-geochemical processes and saltwater intrusion on groundwater quality and irrigational suitability assessed by geo-statistical techniques in coastal region of eastern Andhra Pradesh, India. Mar. Pollut. Bull. 2022, 175, 113390. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rusteberg, B.; Uddin, M.S.; Lutz, A.; Saada, M.A.; Sauter, M. An integrated study of spatial multicriteria analysis and mathematical modelling for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza coastal aquifer. J. Environ. Manag. 2013, 124, 25–39. [Google Scholar] [CrossRef]
- Niyazi, B.A.M.; Rajmohan, N.; Masoud, M.H.Z.; Alqarawy, A.M. Groundwater quality appraisal and zone mapping for agriculture utilities in Wadi Fatima, Saudi Arabia using water quality indices, boron and trace metals. Environ. Sci. Pollut. Res. 2024, 31, 40995–41012. [Google Scholar] [CrossRef]
ESA Land Use Class | Description |
---|---|
Trees | Forested areas with high vegetation density |
Shrubland | Areas dominated by shrubs and small plants |
Grassland | Open grass-covered regions |
Cropland | Agricultural fields |
Barren/Sparse Land | Areas with minimal vegetation |
Built-up Areas | Urban and developed regions |
Open Water | Rivers, lakes, and other water bodies |
Herbaceous Wetlands | Wetland vegetation |
Factor | Weight (Borena) | Weight (Jimma) |
---|---|---|
Permeability | 0.252 | 0.245 |
Recharge | 0.210 | 0.214 |
Stream Proximity | 0.146 | 0.131 |
Slope | 0.117 | 0.094 |
Land Use | 0.132 | 0.139 |
Lineament Density | 0.029 | 0.035 |
Lineament Proximity | 0.115 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assefa, G.M.; Abay, F.D.; Kebede, G.A.; Abebe, S. Groundwater Suitability Mapping in Jimma and Borena Zones of Ethiopia Using GIS and Remote Sensing Techniques. Water 2025, 17, 1356. https://doi.org/10.3390/w17091356
Assefa GM, Abay FD, Kebede GA, Abebe S. Groundwater Suitability Mapping in Jimma and Borena Zones of Ethiopia Using GIS and Remote Sensing Techniques. Water. 2025; 17(9):1356. https://doi.org/10.3390/w17091356
Chicago/Turabian StyleAssefa, Geteneh Moges, Frehiwot Derbe Abay, Genetu Addisu Kebede, and Sintayehu Abebe. 2025. "Groundwater Suitability Mapping in Jimma and Borena Zones of Ethiopia Using GIS and Remote Sensing Techniques" Water 17, no. 9: 1356. https://doi.org/10.3390/w17091356
APA StyleAssefa, G. M., Abay, F. D., Kebede, G. A., & Abebe, S. (2025). Groundwater Suitability Mapping in Jimma and Borena Zones of Ethiopia Using GIS and Remote Sensing Techniques. Water, 17(9), 1356. https://doi.org/10.3390/w17091356