Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
- Satellite Imagery: High-resolution satellite images from Landsat 8 (30 m spatial resolution) and Sentinel-2 (10 m spatial resolution) were used to capture land cover changes and vegetation indices. These images provide crucial information on land use patterns, vegetation cover, and soil exposure [25,26].
- Digital Elevation Models (DEMs): Shuttle Radar Topography Mission (STRM) data with a 30 m resolution was used to derive topographic features, such as slope and aspect, which are critical factors in soil erosion modeling [27].
- Soil and Land Use Data: Soil maps were digitized to determine soil erodibility, while land use and cover data were obtained through image classification techniques using GIS software (QGIS version 3.28.0). The data were essential in calculating these factors soil erodibility (K) and Land Cover (LC).
Data Type | Spatial Resolution | Source | Time Period | Purpose in Model |
---|---|---|---|---|
Landsat 8 | 30 m | [27] | 2018–2024 | Land cover classification |
Sentinel-2 | 10 m | [28] | 2018–2024 | Land cover classification |
STRM | 30 m | [30] | 2018–2024 | Slope and aspect analysis |
CHIRPS | ~5 km | [29] | 2018–2024 | Rainfall erosivity computation |
Soil Data | ~5 km | [31] | 2023 | Soil erodibility factor computation |
Field Measurements | 25 m2 plots | In situ erosion plots, sediment traps | 2018–2024 | Validation of soil loss estimates |
2.3. Methodological Framework
2.3.1. Data Preprocessing
2.3.2. Geospatial Analysis
2.3.3. Deep Learning Model Development
3. Results
3.1. Geospatial Modeling of Gridded Parameter of Soil Loss Risk
3.2. Model Performance
- Root Mean Square Error (RMSE): The CNN model achieved an RMSE of 2.3, indicating a low average error between the predicted and observed soil loss values. This is a substantial improvement over the RMSE values of the USLE (15.3) and RUSLE (12.8), highlighting the enhanced precision of the deep learning approach.
- R-squared Value: The R-squared value, which measures the proportion of variance explained by the model, was 0.92 for the CNN model. This high value indicates a strong correlation between the predicted and actual soil loss rates, confirming the model’s effectiveness in capturing the spatial variability of erosion factors. In contrast, traditional models showed lower R-squared values (USLE: 0.65, RUSLE: 0.70), underscoring their limitations in heterogeneous landscapes.
- Mean Absolute Error (MAE): The CNN model’s MAE was significantly lower than that of the traditional models, further validating the accuracy of the deep learning approach. The lower MAE reflects the model’s ability to provide precise soil loss estimates across different areas of the watershed, including those with complex topographical features.
3.3. Soil Loss Mapping
3.4. Comparison with Traditional Models
3.5. Robustness and Sensitivity Analysis
3.5.1. Influence of Rainfall Intensity
3.5.2. Impact of Land Cover Changes
3.5.3. Response to Soil Erodibility and Topography Variations
3.5.4. Implications for Real-Time Monitoring and Adaptive Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, K.; Oliver, M.A.; Siebe, C. Overview Chapter on Soil Degradation. Encycl. Soils Environ. 2023, 3, 165–171. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Baddal, B.; Taner, F.; Ozsahin, D.U. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics 2024, 14, 484. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Tan, P.N.; Luo, L. Convolutional Methods for Predictive Modeling of Geospatial Data. In Proceedings of the 2020 SIAM International Conference on Data Mining, Cincinnati, OH, USA, 7–9 May 2020; Society for Industrial and Applied Mathematics: Cincinnati, OH, USA, 2020; pp. 28–36. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Tsunekawa, A.; Tsubo, M.; Haregeweyn, N. Dynamics and Hotspots of Soil Erosion and Management Scenarios of the Central Rift Valley of Ethiopia. Int. J. Sediment Res. 2012, 27, 84–99. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Driba, D.L.; Emmanuel, E.D.; Doro, K.O. Predicting Wetland Soil Properties Using Machine Learning, Geophysics, and Soil Measurement Data. J. Soils Sediments 2024, 24, 2398–2415. [Google Scholar] [CrossRef]
- Gandhimathi, G.; Chellaswamy, C.; Selvan, T. Comprehensive River Water Quality Monitoring Using Convolutional Neural Networks and Gated Recurrent Units: A Case Study Along the Vaigai River. J. Environ. Manag. 2024, 365, 121567. [Google Scholar]
- Bewket, W.; Teferi, E. Assessment of Soil Erosion Hazard and Prioritization for Treatment at the Watershed Level: Case Study in the Chemoga Watershed, Blue Nile Basin, Ethiopia. Land Degrad. Dev. 2009, 20, 609–622. [Google Scholar] [CrossRef]
- Borrelli, P.; Ballabio, C.; Yang, J.E.; Robinson, D.A.; Panagos, P. GloSEM: High-Resolution Global Estimates of Present and Future Soil Displacement in Croplands by Water Erosion. Sci. Data 2022, 9, 406. [Google Scholar] [CrossRef]
- Ajai, N.; Bhatnagar, R. Desertification and Land Degradation; Taylor & Francis Group: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Fernández, D.; Adermann, E.; Pizzolato, M.; Pechenkin, R.; Rodríguez, C.G.; Taravat, A. Comparative Analysis of Machine Learning Algorithms for Soil Erosion Modelling Based on Remotely Sensed Data. Remote Sens. 2023, 15, 482. [Google Scholar] [CrossRef]
- Ge, Y.; Zhao, L.; Chen, J.; Li, X.; Li, H.; Wang, Z.; Ren, Y. Study on Soil Erosion Driving Forces by Using (R)USLE Framework and Machine Learning: A Case Study in Southwest China. Land 2023, 12, 639. [Google Scholar] [CrossRef]
- Coulibaly, L.K.; Guan, Q.; Assoma, T.V.; Fan, X.; Coulibaly, N. Coupling Linear Spectral Unmixing and RUSLE2 to Model Soil Erosion in the Boubo Coastal Watershed, Côte d’Ivoire. Ecol. Indic. 2021, 130, 108092. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Shangguan, B.; Wang, M.; Wu, Z. A Multi-Level Context-Guided Classification Method with Object-Based Convolutional Neural Network for Land Cover Classification Using Very High-Resolution Remote Sensing Images. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102086. [Google Scholar] [CrossRef]
- Khosravi, K.; Rezaie, F.; Cooper, J.R.; Kalantari, Z.; Abolfathi, S.; Hatamiafkoueieh, J. Soil Water Erosion Susceptibility Assessment Using Deep Learning Algorithms. J. Hydrol. 2023, 618, 129229. [Google Scholar] [CrossRef]
- Miao, S.; Liu, Y.; Liu, Z.; Shen, X.; Liu, C.; Gao, W. A Novel Attention-Based Early Fusion Multi-Modal CNN Approach to Identify Soil Erosion Based on Unmanned Aerial Vehicle. IEEE Access 2024, 12, 95152–95164. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.; Jin, Y.; Sheil, B. Physics-Constrained Hierarchical Data-Driven Modelling Framework for Complex Path-Dependent Behaviour of Soils. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 1831–1850. [Google Scholar] [CrossRef]
- Ramos, L.; Sappa, A.D. Multispectral Semantic Segmentation for Land Cover Classification: An Overview. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14295–14336. [Google Scholar]
- Sbai, A.; Mouadili, O.; Hlal, M.; Benrbia, K.; Mazari, F.Z.; Bouabdallah, M.; Saidi, A. Water Erosion in the Moulouya Watershed and its Impact on Dams’ Siltation (Eastern Morocco). Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 127–131. [Google Scholar] [CrossRef]
- El Yamani, M.; Boussakouran, A.; El Hidan, M.A.; Kahime, K. Exploring Climate Change: Morocco in Focus. In Climate Change Effects and Sustainability Needs: The Case of Morocco; Springer: Cham, Switzerland, 2024; pp. 3–20. [Google Scholar]
- Mountjoy, A.B.; Hilling, D. Africa: Geography and Development; Taylor & Francis: Abingdon, UK, 2023. [Google Scholar]
- He, Y.; Liu, C.; Ni, B.; Lian, H. Ecological Network Resilience of Shiyang River Basin: An Arid Inland Watershed of Northwest China. Chin. Geogr. Sci. 2024, 34, 951–966. [Google Scholar]
- Barakat, A.; Rafai, M.; Mosaid, H.; Islam, M.S.; Saeed, S. Mapping of Water-Induced Soil Erosion Using Machine Learning Models: A Case Study of Oum Er Rbia Basin (Morocco). Earth Syst. Environ. 2022, 7, 151–170. [Google Scholar] [CrossRef]
- Ben Hichou, B.; Dakki, M.; Mhammdi, N. Determining the Impact of a Dam on the Natural Hydro-Sedimentary Dynamics Using Remote Sensing and GIS: Case of the Hassan Ad-Dakhil Dam (South-East Morocco). In Proceedings of the 2023 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Surabaya, Indonesia, 19–20 December 2023; pp. 12–18. [Google Scholar] [CrossRef]
- EarthExplorer Homepage. Available online: https://earthexplorer.usgs.gov (accessed on 3 July 2024).
- Sentiwiki Homepage. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 7 August 2024).
- CHS Homepage. Available online: https://chc.ucsb.edu/data/chirps (accessed on 12 July 2024).
- Ech-Charef, A.; Dekayir, A.; Jordán, G.; Rouai, M.; Chabli, A.; Qarbous, A.; Houfy, F.Z.E. Soil Heavy Metal Contamination in the Vicinity of the Abandoned Zeïda Mine in the Upper Moulouya Basin, Morocco. Implications for Airborne Dust Pollution under Semi-Arid Climatic Conditions. J. Afr. Earth Sci. 2023, 198, 104812. [Google Scholar] [CrossRef]
- Hu, S.; Li, L.; Chen, L.; Cheng, L.; Yuan, L.; Huang, X.; Zhang, T. Estimation of Soil Erosion in the Chaohu Lake Basin through Modified Soil Erodibility Combined with Gravel Content in the RUSLE Model. Water 2019, 11, 1806. [Google Scholar] [CrossRef]
- Lima, D.M.; da Paz, A.R.; Xuan, Y.; Piccilli, D.G.A. Incorporating Spatial Variability in Surface Runoff Modeling with New DEM-Based Distributed Approaches. Comput. Geosci. 2024, 28, 1331–1348. [Google Scholar] [CrossRef]
- Zhang, H.; Renschler, C.S. QGeoWEPP: An Open-Source Geospatial Interface to Enable High-Resolution Watershed-Based Soil Erosion Assessment. Environ. Model. Softw. 2024, 179, 106118. [Google Scholar] [CrossRef]
- Fang, H. Responses of Runoff and Soil Loss on Slopes to Land Use Management and Rainfall Characteristics in Northern China. Int. J. Environ. Res. Public Health 2021, 18, 9583. [Google Scholar] [CrossRef]
- Maqsoom, A.; Aslam, B.; Hassan, U.; Kazmi, Z.A.; Sodangi, M.; Tufail, R.F.; Farooq, D. Geospatial Assessment of Soil Erosion Intensity and Sediment Yield Using the Revised Universal Soil Loss Equation (RUSLE) Model. ISPRS Int. J. Geo-Inf. 2020, 9, 356. [Google Scholar] [CrossRef]
- Xing, X.; Yu, B.; Kang, C.; Huang, B.; Gong, J.; Liu, Y. The Synergy Between Remote Sensing and Social Sensing in Urban Studies: Review and Perspectives. IEEE Geosci. Remote Sens. Mag. 2024, 12, 108–137. [Google Scholar] [CrossRef]
- Weslati, O.; Serbaji, M.M. Spatial Assessment of Soil Erosion by Water Using RUSLE Model, Remote Sensing, and GIS: A Case Study of Mellegue Watershed, Algeria–Tunisia. Environ. Monit. Assess. 2024, 196, 14. [Google Scholar] [CrossRef]
- Rewhel, E.M.; Li, J.; Hamed, A.A.; Keshk, H.M.; Mahmoud, A.S.; Sayed, S.A.; Samir, E.; Zeyada, H.H.; Mohamed, S.A.; Moustafa, M.S.; et al. Deep Learning Methods Used in Remote Sensing Images: A Review. J. Environ. Earth Sci. 2023, 5, 33–64. [Google Scholar] [CrossRef]
- Bou-Imajjane, L.; Belfoul, M.A. Soil Loss Assessment in Western High Atlas of Morocco: Beni Mohand Watershed Study Case. Appl. Environ. Soil Sci. 2020, 2020, 6384176. [Google Scholar] [CrossRef]
- Kaur, G.; Afaq, Y. Developments in Deep Learning for Change Detection in Remote Sensing: A Review. Trans. GIS 2024, 28, 223–257. [Google Scholar] [CrossRef]
- Roy, P.P.; Abdullah, M.S.; Siddique, I.M. Machine Learning Empowered Geographic Information Systems: Advancing Spatial Analysis and Decision Making. World J. Adv. Res. Rev. 2024, 22, 1387–1397. [Google Scholar]
- Majnooni, S.; Fooladi, M.; Nikoo, M.R.; Al-Rawas, G.; Torabi Haghighi, A.; Nazari, R.; Al-Wardy, M.; Gandomi, A.H. Smarter Water Quality Monitoring in Reservoirs Using Interpretable Deep Learning Models and Feature Importance Analysis. J. Water Process Eng. 2024, 60, 105187. [Google Scholar] [CrossRef]
- Farmonov, N.; Esmaeili, M.; Abbasi-Moghadam, D.; Sharifi, A.; Amankulova, K.; Mucsi, L. HypsLiDNet: 3D-2D CNN Model and Spatial–Spectral Morphological Attention for Crop Classification with DESIS and LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11969–11996. [Google Scholar] [CrossRef]
- Zeghmar, A.; Mokhtari, E.; Marouf, N. A Machine Learning Approach for RUSLE-Based Soil Erosion Modeling in Beni Haroun Dam Watershed, Northeast Algeria. Earth Sci. Inform. 2024, 17, 2921–2936. [Google Scholar] [CrossRef]
- Bates, S.; Hastie, T.; Tibshirani, R. Cross-Validation: What Does It Estimate and How Well Does It Do It? J. Am. Stat. Assoc. 2024, 119, 1434–1445. [Google Scholar] [CrossRef]
- Gelete, T.B.; Pasala, P.; Abay, N.G.; Woldemariam, G.W.; Yasin, K.H.; Kebede, E.; Aliyi, I. Integrated Machine Learning and Geospatial Analysis Enhanced Gully Erosion Susceptibility Modeling in the Erer Watershed in Eastern Ethiopia. Front. Environ. Sci. 2024, 12, 1410741. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Talukdar, S.; Baig, M.R.I.; Ramana, G.V.; Rahman, A. Quantifying Soil Erosion and Influential Factors in Guwahati’s Urban Watershed Using Statistical Analysis, Machine and Deep Learning. Remote Sens. Appl. Soc. Environ. 2024, 33, 101088. [Google Scholar] [CrossRef]
- Krivoguz, D. The Kerch Peninsula in Transition: A Comprehensive Analysis and Prediction of Land Use and Land Cover Changes over Thirty Years. Sustainability 2024, 16, 5380. [Google Scholar] [CrossRef]
- Perihanoglu, G.M.; Karaman, H. Spatial Prediction of Received Signal Strength for Cellular Communication Using Support Vector Machine and K-Nearest Neighbours Regression. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, 48, 291–297. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. A Comprehensive Review of Synthetic Data Generation in Smart Farming by Using Variational Autoencoder and Generative Adversarial Network. Eng. Appl. Artif. Intell. 2024, 131, 107881. [Google Scholar] [CrossRef]
- Wu, X.; Lian, W.; Zhou, M.; Dong, H.; Fang, F. Hybrid Approach to Train Delay Prediction: An Integration of Analytical Model and Deep Learning Techniques. IEEE Trans. Ind. Electron. 2024, 72, 3039–3047. [Google Scholar] [CrossRef]
- Hallouz, F.; Meddi, M. Climate Change Impact on Sediment Yield: Case Studies in Africa. In Handbook of Climate Change Impacts on River Basin Management; CRC Press: Boca Raton, FL, USA, 2024; pp. 89–111. [Google Scholar]
- D’Acunto, F.; Marinello, F.; Pezzuolo, A. Rural Land Degradation Assessment through Remote Sensing: Current Technologies, Models, and Applications. Remote Sens. 2024, 16, 3059. [Google Scholar] [CrossRef]
- Terefe, B. Review of Soil Loss Estimation in Ethiopia: Evaluating the Use of the RUSLE Model Integrated with GIS and Remote Sensing Techniques. Res. Sq. 2024. [CrossRef]
- Gaudenzi, B.; Zsidisin, G.A.; Pellegrino, R. Strategic Sourcing: Approaches for Managing Supply Chain Risk; Springer Nature: New York, NY, USA, 2024. [Google Scholar]
- Wang, Y.; Zhang, P.; Xie, Y.; Chen, L.; Cai, Y. Machine Learning Insights into the Evolution of Flood Resilience: A Synthesized Framework Study. J. Hydrol. 2024, 643, 131991. [Google Scholar] [CrossRef]
- Song, Y.; Chaemchuen, P.; Rahmani, F.; Zhi, W.; Li, L.; Liu, X.; Boyer, E.; Bindas, T.; Lawson, K.; Shen, C. Deep Learning Insights into Suspended Sediment Concentrations Across the Conterminous United States: Strengths and Limitations. J. Hydrol. 2024, 639, 131573. [Google Scholar] [CrossRef]
- Abdi, B.; Kolo, K.; Shahabi, H. Soil Erosion and Degradation Assessment Integrating Multi-Parametric Methods of RUSLE Model, RS, and GIS in the Shaqlawa Agricultural Area, Kurdistan Region, Iraq. Environ. Monit. Assess. 2023, 195, 1149. [Google Scholar] [CrossRef]
- Tete, J.N.; Makokha, G.O.; Ngesa, O.O.; Muthami, J.N.; Odhiambo, B.W. Spatio-Temporal Agricultural Drought Quantification in a Rainfed Agriculture, Athi-Galana-Sabaki River Basin. J. Geogr. Inf. Syst. 2024, 16, 201–226. [Google Scholar] [CrossRef]
- Kaushik, K.; Dahiya, S.; Aggarwal, S.; Dwivedi, A.D. (Eds.) Revolutionizing Healthcare Through Artificial Intelligence and Internet of Things Applications; IGI Global: Hershey, PA, USA, 2023. [Google Scholar]
- Gupta, D.; Kumar, P.; Shukla, M.M.; Mahapatra, S. Enhancing Climate Change Prediction and Risk Assessment with Deep Learning: Architectural Approaches and Data Challenges. In AI for Climate Change and Environmental Sustainability; CRC Press: Boca Raton, FL, USA, 2024; pp. 19–36. [Google Scholar]
Site ID | Coordinates (WKT) | Tonnes/Hec/Year | Plot Diameter (m2) | Monthly Sediment Yield (tons/ha) | Monthly Erosion Depth (mm) | Runoff Volume (L/m2) (Per Event > 10 mm) | Slope Gradient (%) | Land Cover Type | Soil Texture |
---|---|---|---|---|---|---|---|---|---|
1 | Point (−4.9656, 32.4347) | 4 | 25 | 0.33 | 1.5 | 12.5 | 5–45 | Agriculture | Sandy Loam |
2 | Point (−4.6415, 32.6976) | 5 | 25 | 0.42 | 2.1 | 14.8 | 15 | Bad Land | Clay |
3 | Point (−4.6243, 32.9363) | 5 | 25 | 0.42 | 1.9 | 13.9 | 25 | Forest | Limestone |
4 | Point (−3.7622, 33.3288) | 5 | 25 | 0.42 | 2.3 | 15.3 | 35 | Agriculture | Sandy Loam |
5 | Point (−3.4564, 33.6016) | 1 | 25 | 0.08 | 0.5 | 5.6 | 10 | Bad Land | Clay |
6 | Point (−3.3509, 33.9709) | 5 | 25 | 0.42 | 2.4 | 16.1 | 40 | Agriculture | Sandy Loam |
7 | Point (−3.4913, 34.1054) | 2 | 25 | 0.17 | 1 | 7.9 | 20 | Forest | Limestone |
8 | Point (−2.8168, 34.5496) | 5 | 25 | 0.42 | 2.2 | 14.5 | 30 | Bad Land | Clay |
9 | Point (−3.1615, 34.5689) | 5 | 25 | 0.42 | 2.3 | 15.8 | 45 | Agriculture | Sandy Loam |
10 | Point (−3.5485, 34.3066) | 5 | 25 | 0.42 | 2 | 14.3 | 25 | Bad Land | Clay |
11 | Point (−2.1974, 33.8785) | 5 | 25 | 0.42 | 2.4 | 15.7 | 35 | Agriculture | Sandy Loam |
12 | Point (−2.4740, 33.4118) | 5 | 25 | 0.42 | 2.1 | 14.6 | 15 | Forest | Limestone |
13 | Point (−3.4617, 32.9065) | 3 | 25 | 0.25 | 1.7 | 10.3 | 20 | Bad Land | Clay |
14 | Point (−2.6377, 33.8634) | 3 | 25 | 0.25 | 1.8 | 11.2 | 25 | Agriculture | Sandy Loam |
15 | Point (−3.6365, 34.5253) | 3 | 25 | 0.25 | 1.6 | 10.7 | 30 | Forest | Limestone |
16 | Point (−4.0967, 33.0427) | 1 | 25 | 0.08 | 0.6 | 6.2 | 10 | Bad Land | Clay |
17 | Point (−2.8155, 33.2146) | 3 | 25 | 0.25 | 1.5 | 11.4 | 40 | Agriculture | Sandy Loam |
18 | Point (−1.9227, 34.2252) | 5 | 25 | 0.42 | 2.2 | 15.2 | 35 | Bad Land | Clay |
19 | Point (−2.9246, 34.7436) | 5 | 25 | 0.42 | 2.3 | 14.9 | 45 | Forest | Limestone |
20 | Point (−3.8152, 32.9286) | 2 | 25 | 0.17 | 1.2 | 8.1 | 20 | Agriculture | Sandy Loam |
Model | RMSE (tons/ha/year) | R2 (Accuracy) | MAE (tons/ha/year) |
---|---|---|---|
CNN Model | 2.3 | 0.92 | 1.8 |
USLE | 15.3 | 0.65 | 12.5 |
RUSLE | 12.8 | 0.7 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlal, M.; El Monhim, B.; Chenal, J.; Munyaka, J.-C.B.; Azmi, R.; Sbai, A.; Cwick, G.; Hichou, B.B. Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco. Water 2025, 17, 1351. https://doi.org/10.3390/w17091351
Hlal M, El Monhim B, Chenal J, Munyaka J-CB, Azmi R, Sbai A, Cwick G, Hichou BB. Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco. Water. 2025; 17(9):1351. https://doi.org/10.3390/w17091351
Chicago/Turabian StyleHlal, Mohammed, Bilal El Monhim, Jérôme Chenal, Jean-Claude Baraka Munyaka, Rida Azmi, Abdelkader Sbai, Gary Cwick, and Badr Ben Hichou. 2025. "Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco" Water 17, no. 9: 1351. https://doi.org/10.3390/w17091351
APA StyleHlal, M., El Monhim, B., Chenal, J., Munyaka, J.-C. B., Azmi, R., Sbai, A., Cwick, G., & Hichou, B. B. (2025). Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco. Water, 17(9), 1351. https://doi.org/10.3390/w17091351