Investigating the Effect of Aeration on Residence Time Distribution of a Baffled Horizontal Subsurface Flow Constructed Wetland
Abstract
:1. Introduction
- (1)
- the application of a two-phase CFD model to simulate aeration-driven hydraulic behavior in baffled systems;
- (2)
- the investigation of aeration configuration (rate and position) as design variables affecting RTD and HE;
- (3)
- the provision of actionable insights for optimizing aeration strategies that balance treatment performance and energy use.
2. Description of the CFD Model
2.1. Modeling Setup
2.2. Modeling of Internal Flows
2.3. Simulating Tracer Transport
2.4. The RTD Model
3. Results and Discussion
3.1. RTD Analysis
3.2. Hydraulic Performance Analysis
3.3. Future Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stottmeister, U.; Wiessner, A.; Kuschk, P.; Kappelmeyer, U.; Kastner, M.; Bederski, O.; Muller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Liu, X.; Zhao, Z.; Xing, Z.; Wu, L.; Xu, X. Aeration and hydraulic efficiency in spiral wetlands via waterfall design. J. Water Process Eng. 2024, 67, 106228. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Ding, Y.; Niu, R.; Zhao, X.; Yan, D. The impact of influent mode on nitrogen removal in horizontal subsurface flow constructed wetlands: A simple analysis of hydraulic efficiency and nutrient distribution. Ecol. Eng. 2013, 60, 271–275. [Google Scholar] [CrossRef]
- Cakir, R.; Gidirislioglu, A.; Cebi, U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters. J. Environ. Manag. 2015, 164, 121–128. [Google Scholar] [CrossRef]
- Tee, H.C.; Lim, P.E.; Seng, C.E.; Nawi, M.A. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal. Bioresour. Technol. 2012, 104, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Cotterill, S.; Keenahan, J. Investigating the treatment efficiency of a baffled horizontal subsurface flow constructed wetland with diverse hydraulic efficiency. J. Environ. Manag. 2025, 379, 124864. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X.; Peng, S.; Wu, Q.; Yan, L. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems. Bioresour. Technol. 2015, 198, 7–15. [Google Scholar] [CrossRef]
- Uggetti, E.; Hughes-Riley, T.; Morris, R.H.; Newton, M.I.; Trabi, C.L.; Hawes, P.; Puigagut, J.; Garcia, J. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. Sci. Total Environ. 2016, 559, 212–217. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, L.; Wei, C.; Wu, W.; Zhao, X.; Lu, T. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration. Bioresour. Technol. 2018, 248 Pt B, 98–103. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Bian, D.; Nie, Z.; Ai, S.; Tian, X.; Wang, H. Effect of hydraulic residence time and inlet flow distribution ratio on the pollutant removal of low-temperature municipal wastewater in multistage AO process. Water Environ. J. 2020, 34, 742–752. [Google Scholar] [CrossRef]
- Huang, X.; Dong, W.; Wang, H.; Jiang, S. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. Bioresour. Technol. 2017, 241, 969–978. [Google Scholar] [CrossRef]
- Wu, H.; Fan, J.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Lv, J. Optimization of organics and nitrogen removal in intermittently aerated vertical flow constructed wetlands: Effects of aeration time and aeration rate. Int. Biodeterior. Biodegrad. 2016, 113, 139–145. [Google Scholar] [CrossRef]
- Alvarado, A.; Vesvikar, M.; Cisneros, J.F.; Maere, T.; Goethals, P.; Nopens, I. CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond. Water Res. 2013, 47, 4528–4537. [Google Scholar] [CrossRef] [PubMed]
- Karpinska, A.M.; Bridgeman, J. Towards a robust CFD model for aeration tanks for sewage treatment—A lab-scale study. Eng. Appl. Comput. Fluid Mech. 2017, 11, 371–395. [Google Scholar] [CrossRef]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Savickis, J.; Nepf, H.; Marion, A. A numerical study of the effect of wetland shape and inlet-outlet configuration on wetland performance. Ecol. Eng. 2017, 105, 170–179. [Google Scholar] [CrossRef]
- Savickis, J.; Bottacin-Busolin, A.; Zaramella, M.; Sabokrouhiyeh, N.; Marion, A. Effect of a meandering channel on wetland performance. J. Hydrol. 2016, 535, 204–210. [Google Scholar] [CrossRef]
- Yang, M.; Lu, M.; Bian, H.; Sheng, L.; He, C. Effects of clogging on hydraulic behavior in a vertical-flow constructed wetland system: A modelling approach. Ecol. Eng. 2017, 109, 41–47. [Google Scholar] [CrossRef]
- Hua, G.; Kong, J.; Ji, Y.; Li, M. Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands. Sci. Total Environ. 2018, 621, 1142–1150. [Google Scholar] [CrossRef]
- Wei, J.; Cotterill, S.; Keenahan, J. Optimizing the hydraulic performance of a baffled horizontal subsurface flow constructed wetland through computational fluid dynamics modelling. J. Environ. Manag. 2024, 351, 119776. [Google Scholar] [CrossRef]
- Guo, C.; Cui, Y.; Shi, Y.; Luo, Y.; Liu, F.; Wan, D.; Ma, Z. Improved test to determine design parameters for optimization of free surface flow constructed wetlands. Bioresour. Technol. 2019, 280, 199–212. [Google Scholar] [CrossRef]
- Rengers, E.E.; Silva, J.B.d.; Paulo, P.L.; Janzen, J.G. Hydraulic performance of a modified constructed wetland system through a CFD-based approach. J. Hydro-Environ. Res. 2016, 12, 91–104. [Google Scholar] [CrossRef]
- Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, D.M.; Wass, R.D. Conservative and reactive solute transport in constructed wetlands. Water Resour. Res. 2004, 40, W01201. [Google Scholar] [CrossRef]
- Fan, L.; Hai, R.; Lu, Z. CFD study on hydraulic performance of subsurface flow constructed wetland: Effect of distribution and catchment area. Korean J. Chem. Eng. 2010, 26, 1272–1278. [Google Scholar] [CrossRef]
- Colli, A.N.; Bisang, J.M. Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation. Int. J. Heat Mass Transf. 2019, 137, 835–846. [Google Scholar] [CrossRef]
- Manenti, S.; Todeschini, S.; Collivignarelli, M.C.; Abbà, A. Integrated RTD−CFD Hydrodynamic Analysis for Performance Assessment of Activated Sludge Reactors. Environ. Process. 2018, 5, 23–42. [Google Scholar] [CrossRef]
- Persson, J.; Somes, N.L.G.; Wong, T.H.F. Hydraulics efficiency of constructed wetlands and ponds. Water Sci. Technol. 1999, 40, 291–300. [Google Scholar] [CrossRef]
- Bodin, H.; Mietto, A.; Ehde, P.M.; Persson, J.; Weisner, S.E.B. Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands. Ecol. Eng. 2012, 49, 201–211. [Google Scholar] [CrossRef]
- Aylward, L.; Bonner, R.; Sheridan, C.; Kappelmeyer, U. Hydraulic study of a non-steady horizontal sub-surface flow constructed wetland during start-up. Sci. Total Environ. 2019, 646, 880–892. [Google Scholar] [CrossRef]
- Liu, J.; Dong, B.; Zhou, W.; Qian, Z. Optimal selection of hydraulic indexes with classical test theory to compare hydraulic performance of constructed wetlands. Ecol. Eng. 2020, 143, 105687. [Google Scholar] [CrossRef]
- Butterworth, E.; Dotro, G.; Jones, M.; Richards, A.; Onunkwo, P.; Narroway, Y.; Jefferson, B. Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecol. Eng. 2013, 54, 236–244. [Google Scholar] [CrossRef]
- Hreiz, R.; Potier, O.; Wicks, J.; Commenge, J.M. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor. Environ. Technol. 2019, 40, 2657–2670. [Google Scholar] [CrossRef] [PubMed]
- Munoz, P.; Drizo, A.; Cully Hession, W. Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Res. 2006, 40, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
Aeration Position | Aeration Rate (m3/day) | ||||
---|---|---|---|---|---|
0.1 | 0.15 | 0.2 | 0.25 | 0.3 | |
A | A1 | A2 | A3 | A4 | A5 |
B | B1 | B2 | B3 | B4 | B5 |
C | C1 | C2 | C3 | C4 | C5 |
Parameter | Value | Unit | Source |
---|---|---|---|
water kinematic viscosity | 1 × 10−6 | m2/s | Empirical value |
water density | 1000 | kg/m3 | Empirical value |
air kinematic viscosity | 1.48 × 10−5 | m2/s | Empirical value |
air density | kg/m3 | Empirical value | |
surface tension of water/air | 7.20 × 10−2 | N/m | Empirical value |
gravitational acceleration | −9.81 | m/s2 | Empirical value |
porosity | 45% | - | tested |
average particle size | 8 | mm | tested |
scalar diffusion coefficient | 2.00 × 10−6 | - | [20] |
Case | Aeration Rate (m3/day) | (h) | λ | ||
---|---|---|---|---|---|
0 | 0 | 34.5 | 1.6087 | 44.63 | 0.9297 |
A1 | 0.1 | 35 | 1.5500 | 44.89 | 0.9352 |
A2 | 0.15 | 35 | 1.5357 | 44.95 | 0.9365 |
A3 | 0.2 | 35 | 1.5214 | 45.03 | 0.9381 |
A4 | 0.25 | 35.25 | 1.4965 | 45.15 | 0.9406 |
A5 | 0.3 | 35.25 | 1.4823 | 45.23 | 0.9423 |
B1 | 0.1 | 35.75 | 1.5455 | 44.92 | 0.9358 |
B2 | 0.15 | 35.75 | 1.5315 | 44.99 | 0.9373 |
B3 | 0.2 | 35.75 | 1.5105 | 45.10 | 0.9396 |
B4 | 0.25 | 36 | 1.4861 | 45.26 | 0.9429 |
B5 | 0.3 | 36 | 1.4792 | 45.33 | 0.9444 |
C1 | 0.1 | 36 | 1.4514 | 45.49 | 0.9477 |
C2 | 0.15 | 36 | 1.4375 | 45.65 | 0.9510 |
C3 | 0.2 | 36 | 1.4306 | 45.79 | 0.9540 |
C4 | 0.25 | 36 | 1.4236 | 45.95 | 0.9573 |
C5 | 0.3 | 36.25 | 1.4000 | 46.05 | 0.9594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Cotterill, S.; Keenahan, J. Investigating the Effect of Aeration on Residence Time Distribution of a Baffled Horizontal Subsurface Flow Constructed Wetland. Water 2025, 17, 1175. https://doi.org/10.3390/w17081175
Wei J, Cotterill S, Keenahan J. Investigating the Effect of Aeration on Residence Time Distribution of a Baffled Horizontal Subsurface Flow Constructed Wetland. Water. 2025; 17(8):1175. https://doi.org/10.3390/w17081175
Chicago/Turabian StyleWei, Jiahao, Sarah Cotterill, and Jennifer Keenahan. 2025. "Investigating the Effect of Aeration on Residence Time Distribution of a Baffled Horizontal Subsurface Flow Constructed Wetland" Water 17, no. 8: 1175. https://doi.org/10.3390/w17081175
APA StyleWei, J., Cotterill, S., & Keenahan, J. (2025). Investigating the Effect of Aeration on Residence Time Distribution of a Baffled Horizontal Subsurface Flow Constructed Wetland. Water, 17(8), 1175. https://doi.org/10.3390/w17081175