Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems
Abstract
:1. Introduction
2. Principles and Development of Environmental DNA Technology
Principles and Development of eDNA Metabarcoding Technology
3. Application of Water Ecological Health Monitoring
3.1. Monitoring the Diversity of Aquatic Communities
3.2. Monitoring of Target Species
3.3. Monitoring of Aquatic Organisms in Response to Environmental Stresses
4. Limitations and Breakthrough Directions
4.1. Lack of Standardized Monitoring Processes
4.2. eDNA Sample Source, Collection
4.3. Pitfalls in Quantification and Relative Abundance
4.4. Bias in the Annotation of Operable Classification Units
4.5. Limited Application Purpose
5. Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sales, N.G.; Wangensteen, O.S.; Carvalho, D.C.; Deiner, K.; Præbel, K.; Coscia, I.; McDevitt, A.D.; Mariani, S. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. Sci. Total Environ. 2021, 754, 142096. [Google Scholar] [CrossRef] [PubMed]
- Colvin, S.A.R.; Sullivan, S.M.P.; Shirey, P.D.; Colvin, R.W.; Winemiller, K.O.; Hughes, R.M.; Fausch, K.D.; Infante, D.M.; Olden, J.D.; Bestgen, K.R.; et al. Headwater streams and wetlands are critical for sustaining fish, Fisheries, and Ecosystem Services. Fisheries 2019, 44, 73–91. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Macedo, H.E.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar]
- Vasileva-TcanKkova, R.S. Global ecological problems of modern society. Acta Sci. Nat. 2022, 9, 63–86. [Google Scholar] [CrossRef]
- Biggs, J.; Von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar]
- Hu, H.; Wei, X.Y.; Liu, L.; Wang, Y.B.; Jia, H.J.; Bu, L.K.; Pei, D.S. Supervised machine learning improves general applicability of eDNA metabarcoding for reservoir health monitoring. Water Res. 2023, 246, 120686. [Google Scholar] [CrossRef]
- Zhang, X. Environmental DNA Shaping a New Era of Ecotoxicological Research. Environ. Sci. Technol. 2019, 53, 5605–5612. [Google Scholar] [CrossRef]
- Li, F.; Qin, S.; Wang, Z.; Zhang, Y.; Yang, Z. Environmental DNA metabarcoding reveals the impact of different land use on multitrophic biodiversity in riverine systems. Sci. Total Environ. 2022, 855, 158958. [Google Scholar] [CrossRef]
- Kavehei, A.; Hose, G.C.; Chariton, A.A.; Gore, D.B. Application of environmental DNA for assessment of contamination downstream of a legacy base metal mine. J. Hazard. Mater. 2021, 416, 125794. [Google Scholar] [CrossRef]
- Oyabu, A.; Wu, L.; Matsumoto, T.; Kihara, N.; Yamanaka, H.; Minamoto, T. The effect of artificial light at night on wild fish community: Manipulative field experiment and species composition analysis using environmental DNA. Environ. Adv. 2023, 15, 100457. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Y.; Zhou, X.; Li, Q.; Zhang, J.; Cheng, R.; Zuo, Q. Environmental DNA metabarcoding revealing the distinct responses of phytoplankton and zooplankton to cascade dams along a river-way. Ecol. Indic. 2024, 166, 112545. [Google Scholar]
- Andres, K.J.; Lodge, D.M.; Andrés, J. Environmental DNA reveals the genetic diversity and population structure of an invasive species in the Laurentian Great Lakes. Proc. Natl. Acad. Sci. USA 2023, 120, e2307345120. [Google Scholar] [PubMed]
- Olds, B.P.; Jerde, C.L.; Renshaw, M.A.; Li, Y.; Evans, N.T.; Turner, C.R.; Deiner, K.; Mahon, A.R.; Brueseke, M.A.; Shirey, P.D.; et al. Estimating species richness using environmental DNA. Ecol. Evol. 2016, 6, 42144226. [Google Scholar]
- Jiang, P.-W.; Li, M.; Zhang, S.; Chen, Z.-Z.; Xu, S.-N. Investigating the fish diversity in pearl river estuary based on environmental dna matebarcoding and bottom trawling. Acta Hydrobiol. Sin. 2022, 46, 1701–1711. [Google Scholar]
- Lin, Y.; Xu, J.; Shen, L.; Zhou, X.; He, L.; Zhao, Z.; Xu, S. Spatial and Temporal Variations in Phytoplankton Community in Dianchi Lake Using eDNA Metabarcoding. Water 2023, 16, 32. [Google Scholar] [CrossRef]
- Lv, J.; Lin, Y.; Zhao, Z.; Zhou, X. eDNA metabarcoding revealed the seasonal and spatial variation of phytoplankton functional groups in the Chai river and their relationship with environmental factors. J. Freshw. Ecol. 2023, 38, 2176374. [Google Scholar]
- Song, J.; Liang, D. Community structure of zooplankton and its response to aquatic environmental changes based on eDNA metabarcoding. J. Hydrol. 2023, 622, 129692. [Google Scholar]
- Ficetola, G.F.; Miaud, C.; Pompanon, F.; Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 2008, 4, 423–425. [Google Scholar]
- Chariton, A.A.; Court, L.N.; Hartley, D.M.; Colloff, M.J.; Hardy, C.M. Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Front. Ecol. Environ. 2010, 8, 233–238. [Google Scholar]
- Ji, Y.; Ashton, L.; Pedley, S.M.; Edwards, D.P.; Tang, Y.; Nakamura, A.; Kitching, R.; Dolman, P.M.; Woodcock, P.; Edwards, F.A.; et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 2013, 16, 1245–1257. [Google Scholar]
- Lanzén, A.; Dahlgren, T.G.; Bagi, A.; Hestetun, J.T. Benthic eDNA metabarcoding provides accurate assessments of impact from oil extraction, and ecological insights. Ecol. Indic. 2021, 130, 108064. [Google Scholar] [CrossRef]
- Nuñez, N.F.; Maggia, L.; Stenger, P.-L.; Lelievre, M.; Letellier, K.; Gigante, S.; Manez, A.; Mournet, P.; Ripoll, J.; Carriconde, F. Potential of high-throughput eDNA sequencing of soil fungi and bacteria for monitoring ecological restoration in ultramafic substrates: The case study of the New Caledonian biodiversity hotspot. Ecol. Eng. 2021, 173, 106416. [Google Scholar] [CrossRef]
- Rieder, J.; Kapopoulou, A.; Bank, C.; Adrian-Kalchhauser, I. Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. Environ. Microbiome 2023, 18, 1–21. [Google Scholar]
- Chen, W.; Wang, J.; Zhao, Y.; He, Y.; Chen, J.; Dong, C.; Liu, L.; Wang, J.; Zhou, L. Contrasting pollution responses of native and non-native fish communities in anthropogenically disturbed estuaries unveiled by eDNA metabarcoding. J. Hazard. Mater. 2024, 480, 136323. [Google Scholar]
- Burki, F.; Sandin, M.M.; Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 2021, 31, R1267–R1280. [Google Scholar] [CrossRef]
- Hermans, S.M.; Lear, G.; Buckley, T.R.; Buckley, H.L. Environmental DNA sampling detects between-habitat variation in soil arthropod communities, but is a poor indicator of fine-scale spatial and seasonal variation. Ecol. Indic. 2022, 140, 109040. [Google Scholar]
- Chen, X.; Li, S.; Zhao, J.; Yao, M. Passive eDNA sampling facilitates biodiversity monitoring and rare species detection. Environ. Int. 2024, 187, 108706. [Google Scholar]
- Seymour, M.; Edwards, F.K.; Cosby, B.J.; Bista, I.; Scarlett, P.M.; Brailsford, F.L.; Glanville, H.C.; de Bruyn, M.; Carvalho, G.R.; Creer, S. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 2021, 4, 1–12. [Google Scholar]
- Ernetti, J.R.; Lopes, C.M.; Ribeiro, L.P.; De Bastiani, V.I.; Lucas, E.M.; Toledo, L.F. Environmental DNA survey does not detect additional populations of a critically endangered leaf frog, but reveal another threat to the species. J. Nat. Conserv. 2024, 78, 126572. [Google Scholar] [CrossRef]
- Valentin, V.; Frédéric, R.; Isabelle, D.; Olivier, M.; Yorick, R.; Agnès, B. Assessing pollution of aquatic environments with diatoms’ DNA metabarcoding: Experience and developments from France water framework directive networks. Metabarcoding Metagenomics 2019, 3, e39646. [Google Scholar]
- Yu, S. Research on the application of environmental DNA technology in aquatic biological monitoring. Sci. Technol. Vis. 2019, 22, 78–79+89. [Google Scholar]
- Zeng, Y.; Chen, Z.; Cao, J.; Li, S.; Xia, Z.; Sun, Y.; Zhang, J.; He, P. Revolutionizing early-stage green tide monitoring: eDNA metabarcoding insights into Ulva prolifera and microecology in the South Yellow Sea. Sci. Total Environ. 2023, 912, 169022. [Google Scholar] [CrossRef] [PubMed]
- Ardura, A.; Rick, J.; Martinez, J.L.; Zaiko, A.; Garcia-Vazquez, E. Stress resistance for unraveling potential biopollutants. Insights from ballast water community analysis through DNA. Mar. Pollut. Bull. 2021, 163, 111935. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, X.; Chen, Y.; Liu, H.; Wang, S.; Zhang, M.; Ma, H.; Yu, K.; Wang, L. A new strategy based on a cascade amplification strategy biosensor for on-site edna detection and outbreak warning of crown-of-thorns starfish. Sci. Total Environ. 2024, 927, 172258. [Google Scholar]
- Osathanunkul, M. Species-specific eDNA assay development for enhanced box jellyfish risk management in coastal environments. Sci. Total Environ. 2024, 931, 172900. [Google Scholar]
- Gibson, K.; Song, H.; Chen, N. Metabarcoding analysis of microbiome dynamics during a Phaeocystis globosa bloom in the Beibu Gulf, China. Harmful Algae 2022, 114, 102217. [Google Scholar] [CrossRef]
- Abdul Manaff, A.H.N.; Hii, K.S.; Luo, Z.; Liu, M.; Law, I.K.; Teng, S.T.; Akhir, M.F.; Gu, H.; Leaw, C.P.; Lim, P.T. Mapping harmful microalgal species by edna monitoring: A large-scale survey across the southwestern south china sea. Harmful Algae 2023, 129, 102515. [Google Scholar] [CrossRef]
- Junk, I.; Schmitt, N.; Krehenwinkel, H. Tracking climate-change-induced biological invasions by metabarcoding archived natural eDNA samplers. Curr. Biol. 2023, 33, R943–R944. [Google Scholar] [CrossRef]
- Ardura, A.; Fernandez, S.; Planes, S.; Garcia-Vazquez, E. Environmental DNA for the surveillance of biosecurity threats in Mediterranean lagoons. Mar. Environ. Res. 2024, 199, 106601. [Google Scholar] [CrossRef]
- Davidson, I.C.; Scianni, C.; Minton, M.S.; Ruiz, G.M. A history of ship specialization and consequences for marine invasions, management and policy. J. Appl. Ecol. 2018, 55, 1799–1811. [Google Scholar] [CrossRef]
- Yang, S.; Fang, J.; Liu, Y. Study on environmental mechanism affecting diatom community and diatom’s indicating effect on water quality. Henan Sci. Technol. 2021, 40, 132–135. [Google Scholar]
- Yang, J.; Zhang, X.; Xie, Y.; Song, C.; Sun, J.; Zhang, Y.; Giesy, J.P.; Yu, H. Ecogenomics of Zooplankton Community Reveals Ecological Threshold of Ammonia Nitrogen. Environ. Sci. Technol. 2017, 51, 3057–3064. [Google Scholar] [CrossRef] [PubMed]
- Corcoll, N.; Yang, J.; Backhaus, T.; Zhang, X.; Eriksson, K.M. Copper Affects Composition and Functioning of Microbial Communities in Marine Biofilms at Environmentally Relevant Concentrations. Front. Microbiol. 2019, 9, 3248. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, S.; Zhang, Y.; Zhang, N.; Cai, Y.; Yang, Z. DNA metabarcoding reveals human impacts on macroinvertebrate communities in polluted headwater streams: Evidence from the Liao River in northeast China. Environ. Pollut. 2022, 300, 118929. [Google Scholar] [CrossRef]
- Li, F.; Altermatt, F.; Yang, J.; An, S.; Li, A.; Zhang, X. Human activities’ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Chang. Biol. 2020, 26, 6867–6879. [Google Scholar] [CrossRef]
- Schenekar, T. The current state of eDNA research in freshwater ecosystems: Are we shifting from the developmental phase to standard application in biomonitoring? Hydrobiologia 2022, 850, 1263–1282. [Google Scholar] [CrossRef]
- Cristescu, M.E.; Hebert, P.D. Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 209–230. [Google Scholar] [CrossRef]
- Perry, W.B.; Seymour, M.; Orsini, L.; Jâms, I.B.; Milner, N.; Edwards, F.; Harvey, R.; de Bruyn, M.; Bista, I.; Walsh, K.; et al. An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding. Nat. Commun. 2024, 15, 1–13. [Google Scholar] [CrossRef]
- Spear, M.J.; Embke, H.S.; Krysan, P.J.; Zanden, M.J.V. Application of eDNA as a tool for assessing fish population abundance. Environ. DNA 2021, 3, 83–91. [Google Scholar] [CrossRef]
- Aglieri, G.; Quattrocchi, F.; Mariani, S.; Baillie, C.; Spatafora, D.; Di Franco, A.; Turco, G.; Tolone, M.; Di Gerlando, R.; Milazzo, M. Fish eDNA detections in ports mirror fishing fleet activities and highlight the spread of non-indigenous species in the Mediterranean Sea. Mar. Pollut. Bull. 2023, 189, 114792. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.; Liu, K.; Zhong, W.; Yang, J.; Altermatt, F.; Zhang, X. Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates. Environ. Sci. Ecotechnology 2024, 21, 100441. [Google Scholar] [CrossRef] [PubMed]
- Kasai, A.; Takada, S.; Yamazaki, A.; Masuda, R.; Yamanaka, H. The effect of temperature on environmental DNA degradation of Japanese eel. Fish. Sci. 2020, 86, 465–471. [Google Scholar] [CrossRef]
- Zizka, V.M.A.; Weiss, M.; Leese, F. Can metabarcoding resolve intraspecific genetic diversity changes to environmental stressors? a test case using river macrozoobenthos. Mar. Pollut. Bull. 2023, 189, 114792. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Porter, T.M.; Wright, M.; Rudar, J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS ONE 2019, 14, e0220953. [Google Scholar] [CrossRef]
- Cordier, T.; Esling, P.; Lejzerowicz, F.; Visco, J.; Ouadahi, A.; Martins, C.; Cedhagen, T.; Pawlowski, J. Predicting the Ecological Quality Status of Marine Environments from eDNA Metabarcoding Data Using Supervised Machine Learning. Environ. Sci. Technol. 2017, 51, 9118–9126. [Google Scholar] [CrossRef]
- Kelly, R.P.; Shelton, A.O.; Gallego, R. Understanding pcr processes to draw meaningful conclusions from environmental dna studies. Sci. Rep. 2019, 9, 12133. [Google Scholar] [CrossRef]
- Evans, N.T.; Olds, B.P.; Renshaw, M.A.; Turner, C.R.; Li, Y.; Jerde, C.L.; Mahon, A.R.; Pfrender, M.E.; Lamberti, G.A.; Lodge, D.M. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 2015, 16, 29–41. [Google Scholar] [CrossRef]
- Salter, I.; Joensen, M.; Kristiansen, R.; Steingrund, P.; Vestergaard, P. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Commun. Biol. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Fonseca, V.G. Pitfalls in relative abundance estimation using metabarcoding. Mol. Ecol. Resour. 2018, 18, 923–926. [Google Scholar] [CrossRef]
- Xiong, F.; Shu, L.; Zeng, H.; Gan, X.; He, S.; Peng, Z. Methodology for fish biodiversity monitoring with environmental DNA metabarcoding: The primers, databases and bioinformatic pipelines. Water Biol. Secur. 2022, 1, 100007. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed]
- Morey, K.C.; Bartley, T.J.; Hanner, R.H. Validating environmental DNA metabarcoding for marine fishes in diverse ecosystems using a public aquarium. Environ. DNA 2020, 2, 330–342. [Google Scholar] [CrossRef]
- Antich, A.; Palacin, C.; Wangensteen, O.S.; Turon, X. To denoise or to cluster, that is not the question: Optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinform. 2021, 22, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Du, Y.; Zou, J.; Ma, S.; Mao, S.; Li, W.; Yu, C. Mechanisms of microbial-driven changes in soil ecological stoichiometry around gold mines. J. Hazard. Mater. 2023, 465, 133239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Yang, X.; Sha, N.; Wang, J.; Qiu, G.; Chang, M. Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems. Water 2025, 17, 1109. https://doi.org/10.3390/w17081109
Liang X, Yang X, Sha N, Wang J, Qiu G, Chang M. Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems. Water. 2025; 17(8):1109. https://doi.org/10.3390/w17081109
Chicago/Turabian StyleLiang, Xu, Xinyu Yang, Na Sha, Jun Wang, Guanglei Qiu, and Ming Chang. 2025. "Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems" Water 17, no. 8: 1109. https://doi.org/10.3390/w17081109
APA StyleLiang, X., Yang, X., Sha, N., Wang, J., Qiu, G., & Chang, M. (2025). Application of eDNA Metabarcoding Technology to Monitor the Health of Aquatic Ecosystems. Water, 17(8), 1109. https://doi.org/10.3390/w17081109