Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Monitoring Data
3. Methodology
3.1. An Approach to Drainage Network Simplification by the Strahler Ordering Method
3.2. SWMM and LISFLOOD-FP Models
3.3. Coupled SWMM/LISFLOOD-FP
3.4. The Error Metrics of the Coupled Model
4. Results
4.1. Model Calibration and Validation
4.2. Impact of Drainage Networks Structure on Hydrologic Response
4.3. Impact of Drainage Network Structure on Urban Inundation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jian, W.; Li, S.; Lai, C.; Wang, Z.; Cheng, X.; Yat-Man Lo, E.; Pan, T.-C. Evaluating pluvial flood hazard for highly urbanised cities: A case study of the Pearl River Delta Region in China. Nat. Hazards 2021, 105, 1691–1719. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, M.; Wang, Z.; Lai, C. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model. J. Hydrol. 2021, 603, 127105. [Google Scholar] [CrossRef]
- Rasool, U.; Yin, X.; Xu, Z.; Rasool, M.A.; Hussain, M.; Siddique, J.; Hai, N.T. Quantifying pluvial flood simulation in ungauged urban area; A case study of 2022 unprecedented pluvial flood in Karachi, Pakistan. J. Hydrol. 2025, 655, 132905. [Google Scholar] [CrossRef]
- Wu, X.S.; Wang, Z.L.; Guo, S.L.; Liao, W.L.; Zeng, Z.Y.; Chen, X.H. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Agonafir, C.; Lakhankar, T.; Khanbilvardi, R.; Krakauer, N.; Radell, D.; Devineni, N. A review of recent advances in urban flood research. Water Secur. 2023, 19, 100141. [Google Scholar] [CrossRef]
- Mignot, E.; Dewals, B. Hydraulic modelling of inland urban flooding: Recent advances. J. Hydrol. 2022, 609, 127763. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Sci. Total Environ. 2018, 636, 152–167. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Arnone, E.; Pumo, D.; Francipane, A.; La Loggia, G.; Noto, L.V. The role of urban growth, climate change, and their interplay in altering runoff extremes. Hydrol. Process. 2018, 32, 1755–1770. [Google Scholar] [CrossRef]
- Mishra, A.; Mukherjee, S.; Merz, B.; Singh, V.; Wrights, D.; Villarini, G.; Paul, S.; Kumar, N.; Khedun, P.; Niyogi, D.; et al. An Overview of Flood Concepts, Challenges, and Future Directions. J. Hydrol. Eng. 2022, 27, 03122001. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Hu, X.; Xu, S.; Wang, J.; Li, Z.; Zhong, H.; Gan, F. Multiple scenario analyses forecasting the confounding impacts of sea level rise and tides from storm induced coastal flooding in the city of Shanghai, China. Environ. Earth Sci. 2011, 63, 407–414. [Google Scholar]
- Russo, B.; Valentín, M.G.; Tellez-Álvarez, J. The relevance of grated inlets within surface drainage systems in the field of urban flood resilience. A review of several experimental and numerical simulation approaches. Sustainability 2021, 13, 7189. [Google Scholar] [CrossRef]
- Matthew, W.; Bates, P.; Alsdorf, D.; Forsberg, B.; Horritt, M.; Melack, J.; Frappart, F.; Famiglietti, J. Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys. Res. Lett. 2007, 34, L1540. [Google Scholar]
- Price, R.; Vojinovic, Z. Urban food disaster management. Urban Water J. 2008, 5, 259–276. [Google Scholar] [CrossRef]
- Berggrena, K.; Packmanb, J.; Ashleya, R.; Viklandera, M. Climate changed rainfalls for urban drainage capacity assessment. Urban Water J. 2014, 11, 543–556. [Google Scholar] [CrossRef]
- Smith, J.A.; Baeck, M.L.; Morrison, J.E.; Sturdevant-Rees, P.; Turner-Gillespie, D.F.; Bates, P.D. The Regional Hydrology of Extreme Floods in an Urbanizing Drainage Basin. J. Hydrometeorol. 2002, 3, 267–282. [Google Scholar]
- Mahmood, M.I.; Elagib, N.A.; Horn, F.; Saad, S.A.G. Lessons learned from Khartoum flash flood impacts: An integrated assessment. Sci. Total Environ. 2017, 601–602, 1031–1045. [Google Scholar]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a pen-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar]
- Rodríguez-Iturbe, I.; Valdés, J.B. The Geomorphologic Structure of Hydrologic Response. Water Resour. Res. 1979, 15, 1409–1420. [Google Scholar]
- Kruszewski, P. A note on the Horton-Strahler number for random binary search trees. Inf. Process. Lett. 1999, 69, 47–51. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model Reference Manual Volume II—Hydraulics; U.S. Environmental Protection Agency, II(Mayo): Washington, DC, USA, 2017; p. 190. [Google Scholar]
- Campisano, A.; Gullotta, A.; Modica, C. Using EPA-SWMM to simulate intermittent water distribution systems. Urban Water J. 2018, 15, 925–933. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Horritt, M.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Aronica, G.; Beven, K. Bayesian updating of flood inundation likelihoods conditioned on inundation extent data. Hydrol. Process. 2004, 18, 3347–3370. [Google Scholar] [CrossRef]
- Bates, P.D.; Dawson, R.J.; Hall, J.W.; Horritt, M.S.; Nicholls, R.J.; Wicks, J.; Hassan, M.A.A.M. Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast. Eng. 2005, 52, 793–810. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Lai, C.; Chen, X. A simplified approach for flood modeling in urban environments. Hydrol. Res. 2018, 49, 1804–1816. [Google Scholar] [CrossRef]
- Moghadas, S.; Leonhardt, G.; Marsalek, J.; Viklander, M. Modeling Urban Runoff from Rain-on-Snow Events with the U.S. EPA SWMM Model for Current and Future Climate Scenarios. J. Cold Reg. Eng. 2018, 32, 59–72. [Google Scholar] [CrossRef]
- Hunter, N.M.; Villanueva, I.; Pender, G.; Lin, B.; Mason, D.C.; Falconer, R.A.; Neelz, S.; Crossley, A.J.; Bates, P.D.; Liang, D.; et al. Benchmarking 2D hydraulic models for urban flooding. Proc. Inst. Civ. Eng.—Water Manag. 2008, 161, 13–30. [Google Scholar] [CrossRef]
- Russo, B.; Sunyer, D.; Velasco, M.; Djordjevic, S. Analysis of extreme flooding events through a calibrated 1D/2D coupled model: The case of Barcelona (Spain). J. Hydroinform. 2015, 17, 473. [Google Scholar] [CrossRef]
- Yu, D.; Coulthard, T.J. Evaluating the importance of catchment hydrological parameters for urban surface water flood modelling using a simple hydro-inundation model. J. Hydrol. 2015, 524, 385–400. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Fournet, S.; Andersson, J.C.M.; Calmanti, S.; van Weert, F.H.A.; Hattermann, F.F.; Paton, E.N. Flood projections within the Niger River Basin under future land use and climate change. Sci. Total Environ. 2016, 562, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Elisabeth, K.; Christopher, K.; Urich, C.; Xianyuan, Z.; Rao, P.; Suresh, C. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city. Phys. Rev. E 2017, 95, 032312. [Google Scholar]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Glenis, V.; Wilkinson, S.M.; Dawson, R. Impact of climate change on disruption to urban transport networks from pluvial flooding. J. Infrastruct. Syst. 2017, 23, 04017015. [Google Scholar] [CrossRef]
- Pyatkova, K.; Chen, A.S.; Butler, D.; Vojinovi’c, Z.; Djordjevi’c, S. Assessing the knock-on effects of flooding on road transportation. J. Environ. Manag. 2019, 244, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Ogden, F.L.; Raj Pradhan, N.; Downer, C.W.; Zahner, J.A. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on food runoff from an urbanized catchment. Water Resour. Res. 2011, 47, W12503. [Google Scholar] [CrossRef]
- Pallard, B.; Castellarin, A.; Montanari, A. A look at the links between drainage density and flood statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef]
- Song, Y.; Che, C.; Chih, H.; Shiang, W. Variation of uncertainty of drainage density in food hazard mapping assessment with coupled 1D–2D hydrodynamics model. Nat. Hazards 2022, 111, 2297–2315. [Google Scholar]
- Blumensaat, F.; Wolfram, M.; Krebs, P. Sewer model development under minimum data requirements. Environ. Earth Sci. 2012, 65, 1427–1437. [Google Scholar] [CrossRef]
Parameter | Description | Recommended Perturbation Range | Value |
---|---|---|---|
Rough-R | Roughness of river | 0.010–0.14 | 0.014 |
Rough-P | Roughness of pipes | 0.010–0.14 | 0.014 |
N-Imperv | Manning’s value of impermeable area | 0.005–0.05 | 0.015 |
N-Perv | Manning’s value of permeable area | 0.05–0.5 | 0.2 |
S-Imperv/mm | Storage capacity value impermeable area | 1–20 | 2 |
S-Perv/mm | Storage capacity value permeable area | 1–50 | 5 |
MaxRate/(mm/h) | Maximum infiltration rate | 80–150 | 90 |
MinRate/(mm/h) | Minimum infiltration rate | 1–50 | 7.3 |
Decay | Coefficient of attenuation | 1–10 | 5.3 |
Kwidth | The characteristic width | 0.2–5 | 4.8 |
Rainstorm Event | Time | Rainfall | NSE | PRE | |
---|---|---|---|---|---|
Calibration | 29 May 2021 | 24 | 60 | 0.732 | 13.6% |
2 June 2021 | 28 | 52 | 0.788 | 14.7% | |
Verification | 10 August 2021 | 28 | 55 | 0.706 | 15.8% |
Drainage Networks | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Number of pipes | 185 | 342 | 604 |
Number of junctions | 187 | 343 | 606 |
Pipe density (km/km2) | 0.53 | 0.97 | 1.64 |
Surface drainage density (km/km2) | 0.25 | 0.25 | 0.25 |
Total drainage density (km/km2) | 0.78 | 1.22 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.; Wang, T.; Wang, Z.; Song, C.; Chen, X. Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model. Water 2025, 17, 990. https://doi.org/10.3390/w17070990
Wu P, Wang T, Wang Z, Song C, Chen X. Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model. Water. 2025; 17(7):990. https://doi.org/10.3390/w17070990
Chicago/Turabian StyleWu, Pan, Tao Wang, Zhaoli Wang, Chao Song, and Xiaohong Chen. 2025. "Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model" Water 17, no. 7: 990. https://doi.org/10.3390/w17070990
APA StyleWu, P., Wang, T., Wang, Z., Song, C., & Chen, X. (2025). Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model. Water, 17(7), 990. https://doi.org/10.3390/w17070990