Predicting Surface Stokes Drift with Deep Learning
Abstract
:1. Introduction
2. Experimental Configurations
2.1. Data
2.2. Models
2.3. Experimental Design
3. Results
3.1. Earthformer
3.2. ConvLSTM
3.3. Seasonality and Prediction Duration
3.4. Performance Evaluation
4. Discussion
4.1. Dynamic Causes of Seasonal Prediction Errors
4.2. Advantages of Model Architecture
4.3. Predictability of Ocean Dynamic Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stokes, G.G. On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 1847, 8, 441–455. [Google Scholar]
- van den Bremer, T.S.; Breivik, Ø. Stokes drift. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 376, 20170104. [Google Scholar] [CrossRef]
- Webber, J.J.; Huppert, H.E. Stokes drift in coral reefs with depth-varying permeability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190531. [Google Scholar] [CrossRef]
- Franks, P.J.S.; Garwood, J.C.; Ouimet, M.; Cortes, J.; Musgrave, R.C.; Lucas, A.J. Stokes drift of plankton in linear internal waves: Cross-shore transport of neutrally buoyant and depth-keeping organisms. Limnol. Oceanogr. 2019, 65, 1286–1296. [Google Scholar] [CrossRef]
- Rascle, N.; Ardhuin, F.; Queffeulou, P.; Croizé-Fillon, D. A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell. 2008, 25, 154–171. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, P.; Bhaskaran, P.K.; Hisaki, Y. Evaluation of ocean wave power utilizing COWCLIP 2.0 datasets: A CMIP5 model assessment. Clim. Dyn. 2024, 62, 9447–9468. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Wang, B.; Wu, K.; Han, G.; Li, W. A numerical estimation of the impact of Stokes drift on upper ocean temperature. Acta Oceanol. Sin. 2014, 33, 48–55. [Google Scholar] [CrossRef]
- Bosi, S.; Broström, G.; Roquet, F. The role of Stokes drift in the dispersal of North Atlantic surface marine debris. Front. Mar. Sci. 2021, 8, 697430. [Google Scholar] [CrossRef]
- Heath, N. Determining the Effects of Stokes Drift on the Movement of Oil in the Gulf of Mexico. Ph.D. Dissertation, Florida State University, Tallahassee, FL, USA, 2011. Environmental Science, Geology. Available online: https://api.semanticscholar.org/CorpusID:29983443 (accessed on 10 March 2024).
- Yang, Y.; Li, Y.; Li, J.; Liu, J.; Gao, Z.; Guo, K.; Yu, H. The influence of Stokes drift on oil spills: Sanchi oil spill case. Acta Oceanol. Sin. 2021, 40, 30–37. [Google Scholar] [CrossRef]
- Sutherland, G.; Soontiens, N.; Davidson, F.; Smith, G.C.; Bernier, N.; Blanken, H.; Schillinger, D.; Marcotte, G.; Röhrs, J.; Dagestad, K.-F.; et al. Evaluating the leeway coefficient of ocean drifters using operational marine environmental prediction systems. J. Atmos. Ocean. Technol. 2020, 37, 1943–1954. [Google Scholar] [CrossRef]
- Mediavilla, D.; Sepúlveda, H.H.; Alonso, G. Wind and wave height climate from two decades of altimeter records on the Chilean Coast (15°–56.5°S). Ocean Dyn. 2020, 70, 231–239. [Google Scholar] [CrossRef]
- Zimmerman, J.T.F. On the Euler-Lagrange transformation and the Stokes' drift in the presence of oscillatory and residual currents. Deep Sea Res. A Oceanogr. Res. Pap. 1979, 26, 505–520. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Restrepo, J.M.; Lane, E.M. An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 2004, 511, 135–178. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Wang, D.; Li Yi, D. Conservative Surface Wave Effects on a Wind-Driven Coastal Upwelling System. J. Phys. Oceanogr. 2022, 53, 37–55. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Uchiyama, Y.; Chekroun, M.D.; Li Yi, D. Effects of Wave Streaming and Wave Variations on Nearshore Wave-Driven Circulation. J. Phys. Oceanogr. 2020, 50, 3025–3041. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Elfouhaily, T. Waves and the air–sea momentum budget: Implications for ocean circulation modeling. J. Phys. Oceanogr. 2004, 34, 1741–1755. [Google Scholar] [CrossRef]
- Henry, D. Stokes drift in equatorial water waves, and wave–current interactions. Deep Sea Res. II Top. Stud. Oceanogr. 2019, 160, 41–47. [Google Scholar] [CrossRef]
- Large, W.G.; Patton, E.G.; DuVivier, A.K.; Sullivan, P.P.; Romero, L. Similarity theory in the surface layer of large-eddy simulations of the wind-, wave-, and buoyancy-forced Southern Ocean. J. Phys. Oceanogr. 2019, 49, 2165–2187. [Google Scholar] [CrossRef]
- Tamura, H.; Miyazawa, Y.; Oey, L.-Y. The Stokes drift and wave-induced mass flux in the North Pacific. J. Geophys. Res. Oceans 2012, 117, C8. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell. 2004, 6, 101–124. [Google Scholar] [CrossRef]
- Craik, A.D.D.; Leibovich, S. A rational model for Langmuir circulations. J. Fluid Mech. 1976, 73, 401–426. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Sullivan, P.P.; Moeng, C.-H. Langmuir turbulence in the ocean. J. Fluid. Mech. 1997, 334, 1–30. [Google Scholar] [CrossRef]
- Wang, P.; Özgökmen, T.M. Langmuir circulation with explicit surface waves from moving-mesh modeling. Geophys. Res. Lett. 2018, 45, 216–226. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. Mass transport in water waves. Philos. Trans. R. Soc. Lond. A 1953, 245, 535–581. [Google Scholar] [CrossRef]
- Ursell, F. Surface waves on deep water in the presence of a submerged circular cylinder. Math. Proc. Camb. Philos. Soc. 1950, 46, 141–152. [Google Scholar] [CrossRef]
- Kenyon, K.E. Stokes Drift for Random Gravity Waves. J. Geophys. Res. 1969, 74, 6991–6994. [Google Scholar] [CrossRef]
- Webb, A.; Fox-Kemper, B. Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Modell. 2015, 96, 49–64. [Google Scholar] [CrossRef]
- Chen, J.; Gong, X.; Guo, X.; Xing, X.; Lu, K.; Gao, H.; Gong, X. Improved perceptron of subsurface chlorophyll maxima by a deep neural network: A case study with BGC-Argo float data in the northwestern Pacific Ocean. Remote Sens. 2022, 14, 632. [Google Scholar] [CrossRef]
- Krishna Kumar, N.; Savitha, R.; Al Mamun, A. Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 2017, 129, 605–612. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Wang, D.; Lai, Z.; Ying, C.; Li, X.; Han, Y.; Wang, Z.; Dong, C. Spatio-temporal wave forecast with transformer-based network: A case study for the northwestern Pacific Ocean. Ocean Modell. 2024, 188, 102323. [Google Scholar] [CrossRef]
- Mandal, S.; Prabaharan, N. Ocean wave forecasting using recurrent neural networks. Ocean Eng. 2006, 33, 1401–1410. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, X.; Li, Y.; Lianxin, Z.; Zhang, D. Monthly extended ocean predictions based on a convolutional neural network via the transfer learning method. Front. Mar. Sci. 2023, 9, 1073377. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, H. A deep learning–based approach for empirical modeling of single-point wave spectra in open oceans. J. Phys. Oceanogr. 2023, 53, 2089–2103. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, G.; Li, X.; Liu, B.; Xu, Q.; Zhang, J. Tropical cyclone intensity estimation from geostationary satellite imagery using deep convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4101416. [Google Scholar] [CrossRef]
- Liu, G.; Perrie, W.; He, Y. Ocean surface Stokes drift from scatterometer observations. Int. J. Remote Sens. 2014, 35, 1966–1978. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv 2015. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, X.; Wang, H.; Zhu, Y.; Wang, Y.B.; Li, M.; Yeung, D.-Y. Earthformer: Exploring space-time transformers for earth system forecasting. arXiv 2022. [Google Scholar] [CrossRef]
- Chalikov, D. Numerical modeling of surface wave development under the action of wind. Ocean Sci. 2018, 14, 453–470. [Google Scholar] [CrossRef]
- Lenain, L.; Pizzo, N. The contribution of high-frequency wind-generated surface waves to the Stokes drift. J. Phys. Oceanogr. 2020, 50, 3455–3465. [Google Scholar] [CrossRef]
- Tamtare, T.; Dumont, D.; Chavanne, C. The Stokes drift in ocean surface drift prediction. J. Oper. Oceanogr. 2021, 15, 156–168. [Google Scholar] [CrossRef]
- Zamani, A.; Solomatine, D.; Azimian, A.; Heemink, A. Learning from data for wind–wave forecasting. Ocean Eng. 2008, 35, 953–962. [Google Scholar] [CrossRef]
- Su, J. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1745–1760. [Google Scholar] [CrossRef]
- Ge, K.; Wang, C.; Guo, Y.-T.; Tang, Y.-S.; Fan, J.-S. A Multitask Fourier Transformer Network for Seismic Source Characterization Estimation From a Single-Station Waveform. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7503805. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Chen, S.; Wang, L.; Huang, R. Impact of the March Arctic Oscillation on the South China Sea summer monsoon onset. Int. J. Climatol. 2020, 41, E3239–E3248. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, C.; Dong, S. Long-term wind and wave energy resource assessment in the South China Sea based on 30-year hindcast data. Ocean Eng. 2018, 163, 58–75. [Google Scholar] [CrossRef]
- Gao, J.; Wu, G.; Ya, H. Review of the circulation in the Beibu Gulf, South China Sea. Cont. Shelf Res. 2017, 138, 106–119. [Google Scholar] [CrossRef]
- Röhrs, J.; Christensen, K.H.; Hole, L.R.; Broström, G.; Drivdal, M.; Sundby, S. Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn. 2012, 62, 1519–1533. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Mu, L. Parameterization modeling for wind drift factor in oil spill drift trajectory simulation based on machine learning. Front. Mar. Sci. 2023, 10, 1222347. [Google Scholar] [CrossRef]
- He, Z.; Wu, R. Seasonality of interannual atmosphere–ocean interaction in the South China Sea. J. Oceanogr. 2013, 69, 699–712. [Google Scholar] [CrossRef]
- Bao, Y.; Song, Z.; Qiao, F. FIO-ESM Version 2.0: Model Description and Evaluation. J. Geophys. Res. Ocean. 2020, 125, e2019JC016036. [Google Scholar] [CrossRef]
- Han, W.; Moore, A.M.; Levin, J.; Zhang, B.; Arango, H.G.; Curchitser, E.; Di Lorenzo, E.; Gordon, A.L.; Lin, J. Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004–2008. Dyn. Atmos. Oceans 2009, 47, 114–137. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Lv, X. The Generation and Propagation of Wind- and Tide-Induced Near-Inertial Waves in the Ocean. J. Mar. Sci. Eng. 2024, 12, 1565. [Google Scholar] [CrossRef]
- Thomson, J.; D’Asaro, E.A.; Cronin, M.F.; Rogers, W.E.; Harcourt, R.R.; Shcherbina, A. Waves and the equilibrium range at ocean weather station p. J. Geophys. Res. Oceans. 2013, 118, 5951–5962. [Google Scholar] [CrossRef]
Experiments | Inputs | Training Objectives |
---|---|---|
Exp. 1 | wind velocity components (u, v) and water depth h | Stokes drift components (us, vs) |
Exp. 2 | Stokes drift components (us, vs) and direction | |
Exp. 3 | Stokes drift magnitude and direction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Yi, D.L.; Wang, P. Predicting Surface Stokes Drift with Deep Learning. Water 2025, 17, 983. https://doi.org/10.3390/w17070983
Yu X, Yi DL, Wang P. Predicting Surface Stokes Drift with Deep Learning. Water. 2025; 17(7):983. https://doi.org/10.3390/w17070983
Chicago/Turabian StyleYu, Xiaoyu, Daling Li Yi, and Peng Wang. 2025. "Predicting Surface Stokes Drift with Deep Learning" Water 17, no. 7: 983. https://doi.org/10.3390/w17070983
APA StyleYu, X., Yi, D. L., & Wang, P. (2025). Predicting Surface Stokes Drift with Deep Learning. Water, 17(7), 983. https://doi.org/10.3390/w17070983