Enhanced Three-Dimensional (3D) Drought Tracking for Future Migration Patterns in China Under CMIP6 Projections
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Resources
3. Methods
3.1. Drought Index
3.2. The Improved Three-Dimensional Drought Identification Method
3.2.1. Two-Dimensional Drought Patch Identification
- Drought Grid Screening: Grid cells meeting predefined drought criteria (threshold A) are extracted as initial drought regions. These regions are visually represented as yellow grids in Figure 2a.
- Neighborhood Clustering and Area Filtering: Subsequently, adjacent drought grids are clustered through neighborhood connectivity analysis to form preliminary drought patches. Patches smaller than the area threshold (threshold B) are discarded, retaining only large-scale drought patches for subsequent processing (Figure 2b).
- Centroid Calculation: The centroid of each retained drought patch is computed to quantify its positional characteristics. For a patch k containing γ grids, the centroid coordinates (Pa, Pb, Pc) are derived using Equations (1) and (2):
- 4.
- Spatial Relationship Evaluation and Patch Merging: In this final step, the relative positions of drought patches are analyzed using predefined directional sectors (Figure 2h). Two patches are merged if their centroid distance () satisfies bidirectional dynamic thresholds () for their respective directional sectors. For instance, merging patches a and b requires the following:
3.2.2. Three-Dimensional Drought Event Spatiotemporal Coupling
- 1.
- Cross-Temporal Patch Association: Drought patches from consecutive time steps (t and t + 1) are loaded (Figure 2e), and centroid distances (e.g., ) between patches at t and t + 1 are calculated.
- 2.
- Directional Threshold Validation: A pair of patches is assigned to the same drought event if their distance meets both directional dynamic thresholds. For instance (Figure 2f):
- 3.
- Event Propagation and Termination: Qualified patches are connected via centroid trajectories (Figure 2g). The process iterates for subsequent time steps (t + 2, t + 3, etc.) until no valid connections remain, marking the end of the drought event.
3.2.3. Dynamic Threshold Configuration
3.3. Drought Events Characterization
- (1)
- Duration (Dur) is the total number of months in which the drought event occurred.
- (2)
- Migration distance (Dis) is the sum of the distances (in degrees) of all centroids in the complete event, as shown in Equation (3).
- (3)
- Displacement (Disp) is the distance between the centroid of the starting patch and the centroid of the ending patch in a drought event, as shown in Equation (4).
- (4)
- Affected area (Area) is the projected area of the latitude and longitude surfaces of all patches for the complete event.
- (5)
- Event severity (Sev) is the sum of drought index values over all time steps divided by the product of duration and affected area, as shown in Equation (5).
4. Results
4.1. Analysis of Typical Drought Events in the Historical Period
4.2. Basic Characteristics of Meteorological Drought Events
4.3. Spatiotemporal Characteristics of Meteorological Drought Events
4.4. Migration Characteristics of Meteorological Drought Events
5. Discussion
5.1. Sensitivity of the Methodology
5.2. Reasonableness of Identification Results
5.3. Limitations
6. Conclusions
- Future meteorological drought events may occur less frequently but have a greater impact. Historically, 218 drought events occurred, with an average duration of 4 ± 2.5 months. Most events had a severity between 0.2 and 1.4. Under the SSP2-4.5 and SSP5-8.5 scenarios, the number of drought events is expected to be 60 and 68, respectively. Their duration may increase to about 6 ± 0.5 months, and over 95% of the events will have a severity greater than 1.4.
- Meteorological drought events in the future will mainly occur in spring and summer. Historically, drought events were evenly distributed across seasons. However, under both SSP2-4.5 and SSP5-8.5 scenarios, more than 95% of events are projected to occur in spring and summer. This pattern is strongly supported by 85.3% of GCMs under SSP2-4.5 and 88.6% under SSP5-8.5.
- The upper reaches of the Yellow River Basin are likely to face an increased risk of drought in the future. Historically, drought hotspots were concentrated in the middle and upper reaches of the Yangtze River Basin. In the future, these hotspots may shift to the upper Yellow River Basin, increasing the drought risk in this region.
- The migration of meteorological drought events is expected to shift significantly towards the northeast. Historically, 39.9% of events migrated east–west, with over 20% moving westward. Under SSP2-4.5 and SSP5-8.5, northeastward migration will become more dominant, accounting for 33% and 38% of total events, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaos, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5°C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, Y.; Ji, P.; Wu, P.; Sheffield, J.; Otkin, J.A. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhao, D.; Chen, Z.; Liu, L.; Zhu, Y.; Wang, K.; Gao, X.; Wu, H.; Zheng, D. Global distribution and projected variations of compound drought-extreme precipitation events. Earth’s Future 2024, 12, e2024EF004809. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Diffenbaugh, N.S. Landfalling Droughts: Global Tracking of Moisture Deficits From the Oceans Onto Land. Water Resour. Res. 2020, 56, e2019WR026877. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G. Drought losses in China might double between the 1.5 C and 2.0 C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, H.; Baiyinbaoligao; Hu, H.; Khan, M.Y.A.; Wen, J.; Chen, L.; Tian, F. Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrol. 2022, 610, 127815. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Hessl, A.E.; Anchukaitis, K.J.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef]
- Miao, L.; Li, S.; Zhang, F.; Chen, T.; Zhang, Y. Future Drought in the Dry Lands of Asia Under the 1.5 and 2.0 °C Warming Scenarios. Earth’s Future 2020, 8, e2019EF001337. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Peña-Angulo, D.; Beguería, S.; Domínguez-Castro, F.; Tomás-Burguera, M.; Noguera, I.; Gimeno-Sotelo, L.; El Kenawy, A. Global drought trends and future projections. Philos. Trans. R. Soc. A 2022, 380, 20210285. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Singh, V.P.; Shi, P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Glob. Planet. Change 2017, 152, 1–11. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Zhu, Q.; Zhu, D.; Liu, H. Climatic and drought characteristics in the loess hilly-gully region of China from 1957 to 2014. PLoS ONE 2017, 12, e0178701. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; De Maeyer, P. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Liu, B.; Liang, M.; Huang, Z.; Tan, X. Duration–severity–area characteristics of drought events in eastern China determined using a three-dimensional clustering method. Int. J. Climatol. 2021, 41, E3065–E3084. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. A spatio-temporal structure-based approach to drought characterisation. Int. J. Climatol. 2012, 32, 406–418. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Xu, X.; Lei, H. Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J. Hydrol. 2015, 527, 630–640. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Yang, B.; Xie, W.; Tao, C.; Hong, Z.; Xie, Y.; Li, J.; Li, L.; Meng, L. Long-term spatiotemporal characteristics of meteorological drought in China from a three-dimensional (longitude, latitude, time) perspective. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103633. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, W.; Liu, Y.; Yuan, Y.; Huang, J.; Liu, Y. Identifying spatial extent of meteorological droughts: An examination over a humid region. J. Hydrol. 2020, 591, 125505. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Clark, E.A.; Wood, A.W.; Hamlet, A.F.; Lettenmaier, D.P. Twentieth-century drought in the conterminous United States. J. Hydrometeorol. 2005, 6, 985–1001. [Google Scholar] [CrossRef]
- Cavus, Y.; Aksoy, H. Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. J. Hydrol. 2020, 584, 124312. [Google Scholar] [CrossRef]
- Liu, J.; Wu, J.; Ali, S.A.; Linh, N.T.T.; Ren, Y.; Shalamzari, M.J. Unraveling Projected Changes in Spatiotemporal Patterns and Drought Events Across Mainland China Using CMIP6 Models and an Intensity–Area–Duration Algorithm. Land 2024, 13, 1571. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Willems, P.; Liu, T.; Pham, Q.B. Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm. Land 2023, 12, 1820. [Google Scholar] [CrossRef]
- Sheffield, J.; Andreadis, K.; Wood, E.F.; Lettenmaier, D. Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Clim. 2009, 22, 1962–1981. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Wang, Y.; Singh, V.P.; Xu, C.-Y.; Ren, L.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F. Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method. Water 2020, 12, 230. [Google Scholar] [CrossRef]
- Zhai, J.; Huang, J.; Su, B.; Cao, L.; Wang, Y.; Jiang, T.; Fischer, T. Intensity–area–duration analysis of droughts in China 1960–2013. Clim. Dyn. 2017, 48, 151–168. [Google Scholar] [CrossRef]
- Cammalleri, C.; Acosta Navarro, J.C.; Bavera, D.; Diaz, V.; Di Ciollo, C.; Maetens, W.; Magni, D.; Masante, D.; Spinoni, J.; Toreti, A. An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering. Sci. Rep. 2023, 13, 3145. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Wang, X. Extreme Meteorological Drought Events over China (1951–2022): Migration Patterns, Diversity of Temperature Extremes, and Decadal Variations. Adv. Atmos. Sci. 2024, 41, 2313–2336. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Lai, C. Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Sci. Total Environ. 2020, 703, 135541. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil Moisture Drought in China, 1950–2006. Am. Meteorol. Soc. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, J.; Kwon, H.-H.; Kim, T.-W. A new drought monitoring approach using three-dimensional drought properties based on a dynamic drought detection technique algorithm. J. Hydrol. Reg. Stud. 2022, 44, 101270. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef]
- Wen, X.; Tu, Y.H.; Tan, Q.F.; Li, W.Y.; Wang, Z.N. Construction of 3D drought structures of meteorological drought events and their spatio-temporal evolution characteristics. J. Hydrol. 2020, 590, 125539. [Google Scholar] [CrossRef]
- Nie, M.; Huang, S.; Duan, W.; Leng, G.; Bai, G.; Wang, Z.; Huang, Q.; Fang, W.; Peng, J. Meteorological drought migration characteristics based on an improved spatiotemporal structure approach in the Loess Plateau of China. Sci. Total Environ. 2024, 912, 168813. [Google Scholar] [CrossRef]
- Diaz, V.; Corzo Perez, G.A.; Van Lanen, H.A.J.; Solomatine, D.; Varouchakis, E.A. An approach to characterise spatio-temporal drought dynamics. Adv. Water Resour. 2020, 137, 103512. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Yu, Y.; Yu, R. An innovative method integrating run theory and DBSCAN for complete three-dimensional drought structures. Sci. Total Environ. 2024, 926, 171901. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Xu, W.; Chen, S.; Yu, T.; Hu, Z.; Zhang, M.; Jiang, L.; Bao, R.; Guan, X.; Ma, M. How well does the ERA5 reanalysis capture the extreme climate events over China? Part I: Extreme precipitation. Front. Environ. Sci. 2022, 10, 921658. [Google Scholar] [CrossRef]
- Huang, X.; Wei, W.; Jianhui, X.; Shiying, L.; Jiang, Y.; Bin, D.; Liwei, W. The applicability performance of the ERA5-Land precipitation datasets in Southwest China. Plateau Meteorol. 2023, 42, 1562–1575. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA global daily downscaled projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Han, Z.; Yuanbo, L. SPI Based Meteorological Drought Assessment over a Humid Basin: Effects of Processing Schemes. Water 2016, 8, 373. [Google Scholar] [CrossRef]
- Sun, J.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef]
- Wu, S.Y.; Wu, Y.; Wen, J. Future changes in precipitation characteristics in China. Int. J. Climatol. 2019, 39, 3558–3573. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, W.; Liu, Y.; Huang, J.; Yuan, Y.; Liu, Y. Climatological spatial scales of meteorological droughts in China and associated climate variability. J. Hydrol. 2023, 617, 129056. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Yuan, Y. 3D DBSCAN detection and parameter sensitivity of the 2022 Yangtze river summertime heatwave and drought. Atmos. Ocean. Sci. Lett. 2023, 16, 100324. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W. Global seasonal-scale meteorological droughts. Part I: Detection, metrics, and inland/coastal types. Ocean. Land Atmos. Res. 2023, 2, 0016. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Hao, Z.; Hao, F.; Li, C. Projections of future meteorological droughts in China under CMIP6 from a three-dimensional perspective. Agric. Water Manag. 2021, 252, 106849. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, H.; Xing, L.; Li, R.; Li, M. Effects of anthropogenic climate change on the drought characteristics in China: From frequency, duration, intensity, and affected area. J. Hydrol. 2023, 617, 129008. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Lai, W.; Lim, W.H.; Liu, W.; Wang, T.; Wang, P. Attributing changes in future extreme droughts based on PDSI in China. J. Hydrol. 2019, 573, 607–615. [Google Scholar] [CrossRef]
- Yue, Y.; Yan, D.; Yue, Q.; Ji, G.; Wang, Z. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos. Res. 2021, 264, 105828. [Google Scholar] [CrossRef]
- Cherchi, A.; Ambrizzi, T.; Behera, S.; Freitas, A.C.V.; Morioka, Y.; Zhou, T. The Response of Subtropical Highs to Climate Change. Curr. Clim. Change Rep. 2018, 4, 371–382. [Google Scholar] [CrossRef]
- Matsumura, S.; Horinouchi, T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high. Sci. Rep. 2016, 6, 37765. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2021, 253, 105406. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of precipitation over China based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [Google Scholar] [CrossRef]
Historical Period | SSP2-4.5 | SSP5-8.5 | |
---|---|---|---|
Number | 218 | 60 | 68 |
Mean duration (months) | 4.8 | 6.2 | 6.2 |
Mean drought severity | 0.7 | 1.8 | 1.7 |
Mean area (×104 km2) | 273.2 | 1690.8 | 1661.5 |
Mean migration distance (Degree) | 17.2 | 18.8 | 19.8 |
Mean migration displacement (Degree) | 8.6 | 7.1 | 7.6 |
Mean SMI | 4.3 | 4.1 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Chen, X.; Huang, J.; Yuan, Y.; Zhou, H.; Jiang, L. Enhanced Three-Dimensional (3D) Drought Tracking for Future Migration Patterns in China Under CMIP6 Projections. Water 2025, 17, 1099. https://doi.org/10.3390/w17071099
Wu S, Chen X, Huang J, Yuan Y, Zhou H, Jiang L. Enhanced Three-Dimensional (3D) Drought Tracking for Future Migration Patterns in China Under CMIP6 Projections. Water. 2025; 17(7):1099. https://doi.org/10.3390/w17071099
Chicago/Turabian StyleWu, Sijia, Ximing Chen, Jiejun Huang, Yanbin Yuan, Han Zhou, and Liangcun Jiang. 2025. "Enhanced Three-Dimensional (3D) Drought Tracking for Future Migration Patterns in China Under CMIP6 Projections" Water 17, no. 7: 1099. https://doi.org/10.3390/w17071099
APA StyleWu, S., Chen, X., Huang, J., Yuan, Y., Zhou, H., & Jiang, L. (2025). Enhanced Three-Dimensional (3D) Drought Tracking for Future Migration Patterns in China Under CMIP6 Projections. Water, 17(7), 1099. https://doi.org/10.3390/w17071099