Multi-Attribute Analysis of Transmission Channel Waves: Applications in Mine Water Damage Prevention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Approach
2.1.1. Spectral Ratio
2.1.2. Arc Length
2.1.3. Bandwidth
2.2. Experimental Approach
2.2.1. Numerical Simulation Experiment
2.2.2. Field Experiment
3. Results
3.1. Numerical Simulation Results and Analysis
3.2. Experimental Data and Tomographic Imaging Results
4. Discussion
5. Conclusions
- (1)
- Based on the analysis of attribute calculations from numerical simulation and measured data, the spectral ratio, arc length, and bandwidth of channel waves exhibited an obvious linear variation pattern with the propagation distance. The variation characteristics of the spectral ratio, arc length, and bandwidth of channel waves were highly sensitive to geological anomalies, making them effective parameters for tomographic imaging in channel wave exploration.
- (2)
- This paper proposes a method for multi-attribute calculation and tomography of transmitted channel waves. The feasibility of this method has been verified through numerical simulation experiments and field measurements. This method addresses issues related to traditional single-attribute channel wave exploration, enhancing the stability and reliability of geological interpretation, and provides new technologies for mine water damage prevention.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, L. Scientific conception of precision coal mining. J. China Coal Soc. 2017, 42, 1–7. [Google Scholar]
- Xu, M.Z.; Sun, Y.J. Mine Water Safety and Environment: Chinese Experience. Water 2024, 16, 2833. [Google Scholar] [CrossRef]
- Gu, H.L.; Shang, X.Y.; Zhao, H.T. Theory and Technology for the Prevention of Mine Water Disasters. Water 2024, 16, 2952. [Google Scholar] [CrossRef]
- Wang, G.F.; Ren, H.W.; Zhao, G.R.; Zhang, D.; Wen, Z.; Meng, L.; Gong, S. Research and practice of intelligent coal mine technology systems in China. Int. J. Coal Sci. Technol. 2022, 9, 24. [Google Scholar]
- Yang, T.; Xue, Y.; Juan, Y.; Mao, K.; Yao, Y.; Liang, H. Evolution dynamic of intelligent construction strategy of coal mine enterprises in China. Heliyon 2022, 8, e10933. [Google Scholar]
- Wang, G.F.; Zhang, D.S. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining. J. China Univ. Min. Technol. 2018, 47, 4–12. [Google Scholar]
- Yang, X.H.; Cao, S.Y.; Li, D.C.; Yu, P.F.; Zhang, H.R. Analysis of quality factors for Rayleigh channel waves. Appl. Geophys. 2014, 11, 107–114. [Google Scholar] [CrossRef]
- Yang, S.T.; Wei, J.C.; Cheng, J.L.; Shi, L.Q.; Wen, Z.J. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models. Appl. Geophys. 2016, 13, 621–630. [Google Scholar] [CrossRef]
- Pei, X.D. Signal acquisition method for 3D seismic exploration in high density coal mining area. Arab. J. Geosci. 2020, 13, 17–40. [Google Scholar]
- Zhu, M.B.; Cheng, J.Y.; Cui, W.X.; Yue, H. Comprehensive prediction of coal seam thickness by using in-seam seismic surveys and Bayesian kriging. Acta Geophys. 2019, 67, 825–836. [Google Scholar]
- Zhang, L.Y.; Li, A.; Yang, J.G. Data processing of a wide-azimuth, broadband, high-density 3D seismic survey using a low-frequency vibroseis: A case study from Northeast China. Explor. Geophys. 2020, 51, 652–666. [Google Scholar] [CrossRef]
- Ji, G.Z.; Zhang, P.S.; Guo, L.Q. Characteristics of dispersion curves for Love channel waves in transversely isotropic media. Appl. Geophys. 2020, 17, 243–252. [Google Scholar] [CrossRef]
- Wei, W.; Gao, X.; Wu, Y.H. A Study on the Imaging Method for the Channel Wave Dispersion Curve Variability Function. Minerals 2023, 13, 50. [Google Scholar]
- Wang, Y.H. Stable Q analysis on vertical seismic profiling data. Geophysics 2014, 79, 217–225. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhu, G.W.; Wang, W.; Gao, Z. Quantitative Evaluation of Faults by Combined Channel Wave Seismic Transmission-Reflection Detection Method. Minerals. 2022, 12, 1022. [Google Scholar] [CrossRef]
- Zhang, P.S.; Ou, Y.C.; Li, S.L. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China. Coal Sci. Technol. 2021, 49, 1–15. [Google Scholar]
- Teng, J.W.; Li, S.Y.; Jia, M.K.; Liu, H.; Liu, G.; Wang, W.; Volker, S.; Feng, L.; Yao, X.; Wang, K.; et al. Research and Application of In-seam Seismic Survey Technology for Disaster-causing Potential Geology Anomalous Body in Coal Seam. Acta Geol. Sin. (Engl. Ed.) 2020, 94, 10–26. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, G.; Wang, W. Precise prediction of the collapse column based on channel wave spectral disparity characteristics and velocity tomography imaging. J. Geophys. Eng. 2022, 19, 326–335. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q. Application research of attribute fusion technology based on principal component analysis in fracture identification. IOP Conf. Ser. Earth Environ. Sci. 2021, 671, 012026. [Google Scholar] [CrossRef]
- Trugman, D.T.; Ross, Z.E.; Johnson, P.A. Imaging Stress and Faulting Complexity Through Earthquake Waveform Similarity. Geophys. Res. Lett. 2020, 47, 1–8. [Google Scholar] [CrossRef]
- Gao, D.H. The Seismic Kinetic Character and Attribute Analysis of the Marine Strata of Paleozeic Erathem in the South Yellow Sea. Master’s Thesis, Shandong University of Science and Technology, Qingdao, China, 2012. [Google Scholar]
- Pimienta, L.; Schubnel, A.; Violay, M.; Fortin, J.; Guéguen, Y.; Lyon-Caen, H. Anomalous Vp/Vs ratios at seismic frequencies might evidence highly damaged rocks in subduction zones. Geophys. Res. Lett. 2018, 45, 12210–12217. [Google Scholar] [CrossRef]
- Hu, Z.A.; Cao, L.K.; Wu, R.X.; Ji, G. Estimation method of coal channel Q value based on frequency shift phenomenon of transmitting channel wave. Explor. Geophys. 2023, 54, 79–87. [Google Scholar] [CrossRef]
- Kim, J.K.; Wee, S.H.; Yoo, S.H.; Kim, K.H.; Noh, J.S.; Kwon, Y.J. S-wave velocity structures at Yedang Reservoir Dam inferred from amplification characteristics determined using H/V spectral ratios with background noise. Explor. Geophys. 2021, 52, 590–599. [Google Scholar] [CrossRef]
- Heit, B.; Mancilla, F.D.L.; Yuan, X.; Morales, J.; Stich, D.; Martín, R.; Molina-Aguilera, A. Tearing of the mantle lithosphere along the intermediate-depth seismicity zone beneath the Gibraltar Arc: The onset of lithospheric delamination. Geophys. Res. Lett. 2017, 44, 4027–4035. [Google Scholar] [CrossRef]
- Li, X.; Ji, G.; Guan, B.; Du, Z.; Han, C.; Cheng, Q. Elimination of seismic characteristics of solid-filled in ultra-deep fractured-vuggy reservoirs. Explor. Geophys. 2024, 55, 246–262. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Waqas, A.; Shazia, N.; Muyyassar, H. Accentuating the Reservoir Potentials of Balkassar Field by Delineating the Fracture Trends and Hydrocarbon Prospects with the Aid of Seismic Attributes. ACS Omega 2024, 9, 27047–27064. [Google Scholar] [CrossRef]
- Wu, Y.H.; Wang, W.; Zhu, G.W.; Wang, P. Application of seismic multiattribute machine learning to determine coal strata thickness. J. Geophys. Eng. 2021, 18, 834–844. [Google Scholar] [CrossRef]
- Barnes, A.E. The calculation of instantaneous frequency and instantaneous bandwidth. Geophysics 1992, 57, 1520–1524. [Google Scholar] [CrossRef]
Medium | P-Wave Velocity | S-Wave Velocity | Densities | Quality Factor |
---|---|---|---|---|
Coal seam | 1700 m/s | 1000 m/s | 1300 Kg/m3 | 50 |
Rock | 3500 m/s | 2000 m/s | 2600 Kg/m3 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Zhang, T.; Zhan, M. Multi-Attribute Analysis of Transmission Channel Waves: Applications in Mine Water Damage Prevention. Water 2025, 17, 1018. https://doi.org/10.3390/w17071018
Hu Z, Zhang T, Zhan M. Multi-Attribute Analysis of Transmission Channel Waves: Applications in Mine Water Damage Prevention. Water. 2025; 17(7):1018. https://doi.org/10.3390/w17071018
Chicago/Turabian StyleHu, Zean, Tianhao Zhang, and Mengjie Zhan. 2025. "Multi-Attribute Analysis of Transmission Channel Waves: Applications in Mine Water Damage Prevention" Water 17, no. 7: 1018. https://doi.org/10.3390/w17071018
APA StyleHu, Z., Zhang, T., & Zhan, M. (2025). Multi-Attribute Analysis of Transmission Channel Waves: Applications in Mine Water Damage Prevention. Water, 17(7), 1018. https://doi.org/10.3390/w17071018