A Comprehensive Review and Application of Bayesian Methods in Hydrological Modelling: Past, Present, and Future Directions
Abstract
:1. Introduction
1.1. Overview
1.2. Fundamental Bayes’ Theorem
- is the posterior probability distribution of the parameter after observing the data D.
- is the likelihood, which represents the probability of observing data D given the parameter .
- P(θ) is the prior probability distribution of θ before the data are observed.
- P(D) is the marginal likelihood (or evidence), acting as a normalising constant, calculated by integrating over all possible parameter values:
1.3. Liklihood Function
1.4. Prior Distribution
1.5. Posterior Distribution and Bayesian Updating
1.6. Bayesian Estimation
1.7. Predictive Distribution
1.8. Practical Application in Hydrology
- Integration of Diverse Data Sources: Prior information from regional studies can be combined with local observations.
- Uncertainty Quantification: The full posterior distribution gives insights into the range of possible outcomes rather than a single deterministic prediction.
- Adaptive Learning: As new data become available (e.g., during a flood event), the posterior can be updated, leading to improved and dynamic forecasting.
2. Methodology and Literature Review
2.1. Databases and Timeframes
2.2. Search Strategy and Keywords
- (i)
- Core Bayesian Terms: “Bayesian”, “Bayes”, “Markov Chain Monte Carlo”, “hierarchical Bayesian”, “Bayesian network”, “approximate Bayesian computation”.
- (ii)
- Hydrology Keywords: “hydrology”, “flood forecasting”, “flood frequency”, “drought prediction”, “rainfall modelling”, “water quality”, “streamflow”, “runoff”, “groundwater”, “hydraulic”. Advanced Topics: “machine learning”, “data assimilation”, “uncertainty quantification”, “dynamic Bayesian networks”, “spatio-temporal modelling”.
- (iii)
- Boolean Operators: Queries combined these keywords with AND, OR, and NOT to refine results. For example:
2.3. Initial Screening and Eligibility Criteria
- (i)
- Title and Abstract Screening:
- Articles were initially filtered based on relevance to Bayesian methods in hydrology. Titles and abstracts mentioning Bayesian approaches, hydrological modelling, or related topics were retained.
- (ii)
- Language and Publication Type:
- Only English-language peer-reviewed articles, conference proceedings, and book chapters were considered to ensure the quality of the materials and feasibility of analysis.
- (iii)
- Inclusion Criteria:
- Explicit use or discussion of Bayesian methods in hydrological contexts.
- Sufficient methodological detail, allowing for an assessment of how Bayesian inference was applied (e.g., parameter estimation, flood-frequency analysis, model calibration).
- (iv)
- Exclusion Criteria:
- Studies focusing purely on statistical theory without hydrological application.
- Non-academic literature, short news articles, or publications lacking methodological details.
2.4. Full- and Partial-Text Review and Quality Appraisal
- (i)
- Full-Text Retrieval:
- Potentially relevant articles were downloaded and reviewed, some partially and some in full.
- (ii)
- Quality Assessment:
- Studies were assessed on the clarity of Bayesian methodology, data availability, and rigour of results.
- Articles that did not provide enough detail on Bayesian model construction or uncertainty analysis were excluded.
- (iii)
- Reference Checking and the Snowball Approach:
- Reference lists of key articles were scanned to identify additional relevant publications. This iterative process helped capture important works that might not have surfaced in the initial database queries.
- (iv)
- Data Extraction and Categorising Information:
- For each article, the following information was recorded in a spreadsheet.
- Study objective and hydrological domain (flood, drought, water quality, rainfall–runoff, etc.).
- Type of Bayesian method used (MCMC, hierarchical Bayesian, Bayesian network, etc.).
- Key findings, especially regarding uncertainty quantification and parameter estimation.
- Articles were organised into histograms reflecting historical development, current applications, advancements and innovations, and challenges in Bayesian hydrology.
- Overlapping themes (e.g., flood forecasting plus machine learning) were cross-referenced to avoid duplication and to highlight interdisciplinary links.
- (v)
- Final Selection and Synthesis
- Final Dataset: After removing duplicates and non-relevant items, the final list comprised the core references used in this review.
- Synthesis Approach: Literature findings were summarised in narrative form, highlighting the evolution of Bayesian methods in hydrology, their current state-of-the-art applications, and the outstanding challenges.
- Tables and figures (e.g., Table 1 (a), (b), (c), timeline diagrams) were developed to provide a structured overview of major contributions, authorship networks, and emerging trends.
- (vi)
- Limitations in the Overall Search
- While multiple databases and a broad range of keywords were used, some relevant studies may not have been retrieved (e.g., non-English publications or grey literature).
- The chosen timeframe (1975–present) aimed to capture seminal works and current research but may exclude earlier formative studies not widely digitised.
3. Evolution of Bayesian Methods in Hydrology
4. Historical Development of Bayesian Methods in Hydrology
5. Current Applications of Bayesian Methods in Hydrology
5.1. Flood Risk Assessment
5.2. Drought Prediction
5.3. Rainfall Modelling
6. Advancements and Innovations in Bayesian Methods for Hydrology
6.1. Machine Learning and Bayesian Methods
6.2. Integration of Remote Sensing and Big Data
6.3. Hybrid Models
6.4. Data Assimilation
6.5. Spatial and Temporal Modelling
7. Challenges in Bayesian Hydrology
7.1. Current Trends
7.2. Advancements in Computational Tools and Software
7.3. Prior Selection and Subjectivity
7.4. High-Dimensional Parameter Estimation
7.5. Data Limitations and Uncertainty and Computational Demands
7.6. Interdisciplinary Integration in Bayesian Hydrology
7.7. Limitations of the Current Study and the Way Forward
8. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Box, G.E.; Tiao, G.C. Bayesian Inference in Statistical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1973. [Google Scholar]
- Vicens, G.J.; Rodriguez-Iturbe, I.; Schaake, J.C., Jr. A Bayesian framework for the use of regional information in hydrology. Water Resour. Res. 1975, 11, 405–414. [Google Scholar] [CrossRef]
- Sorooshian, S.; Dracup, J.A. Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resour. Res. 1980, 16, 430–442. [Google Scholar] [CrossRef]
- Kuczera, G. A Bayesian surrogate for regional skew in flood frequency analysis. Water Resour. Res. 1983, 19, 821–832. [Google Scholar] [CrossRef]
- Kuczera, G. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resour. Res. 1983, 19, 1151–1162. [Google Scholar] [CrossRef]
- Kuczera, G. Improved parameter inference in catchment models: 2. Combining different kinds of hydrologic data and testing their compatibility. Water Resour. Res. 1983, 19, 1163–1172. [Google Scholar] [CrossRef]
- Pericchi, L.R.; Rodriguez-Iturbe, I. On some problems in Bayesian model choice in hydrology. J. R. Stat. Soc. Ser. D (Stat.) 1983, 32, 273–278. [Google Scholar] [CrossRef]
- Kitanidis, P.K. Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour. Res. 1986, 22, 499–507. [Google Scholar] [CrossRef]
- Kuczera, G. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. J. Hydrol. 1987, 94, 215–236. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Cohn, T.A. Flood frequency analysis with historical and paleoflood information. Water Resour. Res. 1986, 22, 785–793. [Google Scholar] [CrossRef]
- Merz, B.; Thieken, A.H. Separating natural and epistemic uncertainty in flood frequency analysis. J. Hydrol. 2005, 309, 114–132. [Google Scholar] [CrossRef]
- Reis, D.S., Jr.; Stedinger, J.R.; Martins, E.S. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour. Res. 2005, 41, W10419. [Google Scholar] [CrossRef]
- Seidou, O.; Ouarda, T.B.; Barbet, M.; Bruneau, P.; Bobée, B. A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour. Res. 2006, 42, W11408. [Google Scholar] [CrossRef]
- Micevski, T.; Kuczera, G. Combining site and regional flood information using a Bayesian Monte Carlo approach. Water Resour. Res. 2009, 45, W04405. [Google Scholar] [CrossRef]
- Gaume, E.; Gaál, L.; Viglione, A.; Szolgay, J.; Kohnová, S.; Blöschl, G. Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J. Hydrol. 2010, 394, 101–117. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework—Quantile Regression vs. Parameter Regression Technique. J. Hydrol. 2012, 430, 142–161. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A.; Stedinger, J.R. Regional flood frequency analysis using Bayesian generalized least squares: A comparison between quantile and parameter regression techniques. Hydrol. Process. 2012, 26, 1008–1021. [Google Scholar] [CrossRef]
- Parkes, B.; Demeritt, D. Defining the hundred year flood: A Bayesian approach for using historic data to reduce uncertainty in flood frequency estimates. J. Hydrol. 2016, 540, 1189–1208. [Google Scholar] [CrossRef]
- Gaume, E. Flood frequency analysis: The Bayesian choice. Wiley Interdiscip. Rev. Water 2018, 5, e1290. [Google Scholar] [CrossRef]
- Mehmood, A.; Jia, S.; Mahmood, R.; Yan, J.; Ahsan, M. Non-stationary Bayesian modeling of annual maximum floods in a changing environment and implications for flood management in the Kabul River Basin, Pakistan. Water 2019, 11, 1246. [Google Scholar] [CrossRef]
- Qu, C.; Li, J.; Yan, L.; Yan, P.; Cheng, F.; Lu, D. Non-stationary flood frequency analysis using cubic B-spline-based GAMLSS model. Water 2020, 12, 1867. [Google Scholar] [CrossRef]
- Reis, D.S., Jr.; Veilleux, A.G.; Lamontagne, J.R.; Stedinger, J.R.; Martins, E.S. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resour. Res. 2020, 56, e2019WR026940. [Google Scholar]
- Shang, X.; Wang, D.; Singh, V.P.; Wang, Y.; Wu, J.; Liu, J.; Zou, Y.; He, R. Effect of uncertainty in historical data on flood frequency analysis using bayesian method. J. Hydrol. Eng. 2021, 26, 04021011. [Google Scholar]
- Jarajapu, D.C.; Rathinasamy, M.; Agarwal, A.; Bronstert, A. Design flood estimation using extreme Gradient Boosting-based on Bayesian optimization. J. Hydrol. 2022, 613, 128341. [Google Scholar] [CrossRef]
- Barna, D.M.; Engeland, K.; Thorarinsdottir, T.L.; Xu, C.Y. Flexible and consistent Flood–Duration–Frequency modeling: A Bayesian approach. J. Hydrol. 2023, 620, 129448. [Google Scholar]
- Lei, G.; Yin, J.; Wang, W.; Wang, H.; Liu, C. Hydrological frequency analysis in changing environments based on empirical mode decomposition and metropolis-hastings sampling Bayesian models. J. Hydrol. Eng. 2023, 28, 04023027. [Google Scholar] [CrossRef]
- Alexandre, D.A.; Chaudhuri, C.; Gill-Fortin, J. Continental Scale Regional Flood Frequency Analysis: Combining Enhanced Datasets and a Bayesian Framework. Hydrology 2024, 11, 119. [Google Scholar] [CrossRef]
- Lucas, M.; Lang, M.; Renard, B.; Le Coz, J. A comprehensive uncertainty framework for historical flood frequency analysis: A 500-year-long case study. Hydrol. Earth Syst. Sci. 2024, 28, 5031–5047. [Google Scholar]
- Madadgar, S.; Moradkhani, H. A Bayesian framework for probabilistic seasonal drought forecasting. J. Hydrometeorol. 2013, 14, 1685–1705. [Google Scholar]
- Madadgar, S.; Moradkhani, H. Spatio-temporal drought forecasting within Bayesian networks. J. Hydrol. 2014, 512, 134–146. [Google Scholar]
- Avilés, A.; Célleri, R.; Solera, A.; Paredes, J. Probabilistic forecasting of drought events using Markov chain-and Bayesian network-based models: A case study of an Andean regulated river basin. Water 2016, 8, 37. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.; Jin, Y. Forecasting quarterly inflow to reservoirs combining a copula-based Bayesian network method with drought forecasting. Water 2018, 10, 233. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Grzegorczyk, M.A.; Ni, G.; Faisal, M.; Qamar, S.; Shoukry, A.M.; Sharkawy, M.A.; Gani, S.; Al-Deek, F.F. Bayesian network based procedure for regional drought monitoring: The seasonally combinative regional drought indicator. J. Environ. Manag. 2020, 276, 111296. [Google Scholar] [CrossRef]
- Raza, A.; Hussain, I.; Ali, Z.; Faisal, M.; Elashkar, E.E.; Shoukry, A.M.; Al-Deek, F.F.; Gani, S. A seasonally blended and regionally integrated drought index using Bayesian network theory. Meteorol. Appl. 2021, 28, e1992. [Google Scholar]
- Wu, H.; Su, X.; Singh, V.P.; Zhang, T. Predicting hydrological drought with Bayesian model averaging ensemble vine copula (BMAViC) model. Water Resour. Res. 2022, 58, e2022WR033146. [Google Scholar]
- Wu, H.; Su, X.; Singh, V.P.; Niu, J. Predicting compound agricultural drought and hot events using a Cascade Modeling framework combining Bayesian Model Averaging ensemble with Vine Copula (CaMBMAViC). J. Hydrol. 2024, 642, 131901. [Google Scholar]
- Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-based geostatistics. J. R. Stat. Soc. Ser. C Appl. Stat. 1998, 47, 299–350. [Google Scholar] [CrossRef]
- Renard, B.; Garreta, V.; Lang, M. An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation of a regional trend in annual maxima. Water Resour. Res. 2006, 42, W12422. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Leblois, E.; Thyer, M.; Kuczera, G.; Franks, S.W. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res. 2011, 47, W11516. [Google Scholar] [CrossRef]
- Nowak, W.; De Barros, F.P.J.; Rubin, Y. Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour. Res. 2010, 46, W03535. [Google Scholar] [CrossRef]
- Verdin, A.; Rajagopalan, B.; Kleiber, W.; Funk, C. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resour. Res. 2015, 51, 908–921. [Google Scholar]
- Gupta, A.; Kamble, T.; Machiwal, D. Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India. Environ. Earth Sci. 2017, 76, 1–16. [Google Scholar] [CrossRef]
- Yang, P.; Ng, T.L. Fast Bayesian regression kriging method for real-time merging of radar, rain gauge, and crowdsourced rainfall data. Water Resour. Res. 2019, 55, 3194–3214. [Google Scholar]
- Lima, C.H.; Kwon, H.H.; Kim, Y.T. A Bayesian Kriging model applied for spatial downscaling of daily rainfall from GCMs. J. Hydrol. 2021, 597, 126095. [Google Scholar]
- Senoro, D.B.; de Jesus, K.L.M.; Mendoza, L.C.; Apostol, E.M.D.; Escalona, K.S.; Chan, E.B. Groundwater quality monitoring using in-situ measurements and hybrid machine learning with empirical Bayesian kriging interpolation method. Appl. Sci. 2021, 12, 132. [Google Scholar] [CrossRef]
- Zaresefat, M.; Derakhshani, R.; Griffioen, J. Empirical Bayesian Kriging, a robust method for spatial data interpolation of a large groundwater quality dataset from the Western Netherlands. Water 2024, 16, 2581. [Google Scholar] [CrossRef]
- Fill, H.D.; Stedinger, J.R. Using regional regression within index flood procedures and an empirical Bayesian estimator. J. Hydrol. 1998, 210, 128–145. [Google Scholar]
- Marshall, L.; Nott, D.; Sharma, A. Hydrological model selection: A Bayesian alternative. Water Resour. Res. 2005, 41, W10422. [Google Scholar] [CrossRef]
- Reis, D.S., Jr.; Stedinger, J.R. Bayesian MCMC flood frequency analysis with historical information. J. Hydrol. 2005, 313, 97–116. [Google Scholar] [CrossRef]
- Ribatet, M.; Sauquet, E.; Grésillon, J.M.; Ouarda, T.B. A regional Bayesian POT model for flood frequency analysis. Stoch. Environ. Res. Risk Assess. 2007, 21, 327–339. [Google Scholar]
- Viglione, A.; Merz, R.; Salinas, J.L.; Blöschl, G. Flood frequency hydrology: 3. A Bayesian analysis. Water Resour. Res. 2013, 49, 675–692. [Google Scholar] [CrossRef]
- Šraj, M.; Viglione, A.; Parajka, J.; Blöschl, G. The influence of non-stationarity in extreme hydrological events on flood frequency estimation. J. Hydrol. Hydromech. 2016, 64, 426–437. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, L.; Huang, C.; Yu, J. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stoch. Environ. Res. Risk Assess. 2016, 30, 1575–1590. [Google Scholar] [CrossRef]
- Naseri, K.; Hummel, M.A. A Bayesian copula-based nonstationary framework for compound flood risk assessment along US coastlines. J. Hydrol. 2022, 610, 128005. [Google Scholar] [CrossRef]
- Rampinelli, C.G.; Smith, T.J.; Araújo, P.V. Addressing Uncertainty in Flood Hazard Mapping under a Bayesian Approach. J. Hydrol. Eng. 2024, 29, 04024004. [Google Scholar] [CrossRef]
- Kuczera, G. Estimation of runoff-routing model parameters using incompatible storm data. J. Hydrol. 1990, 114, 47–60. [Google Scholar] [CrossRef]
- Khan, M.S.; Coulibaly, P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42, W07409. [Google Scholar] [CrossRef]
- Martina, M.L.V.; Todini, E.; Libralon, A. A Bayesian decision approach to rainfall thresholds based flood warning. Hydrol. Earth Syst. Sci. 2006, 10, 413–426. [Google Scholar] [CrossRef]
- Smith, T.J.; Marshall, L.A. Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques. Water Resour. Res. 2008, 44, W00B05. [Google Scholar] [CrossRef]
- Lima, C.H.R.; Lall, U. Hierarchical Bayesian modeling of multisite daily rainfall occurrence: Rainy season onset, peak, and end. Water Resour. Res. 2009, 45, W07422. [Google Scholar] [CrossRef]
- Haddad, K.; Johnson, F.; Rahman, A.; Green, J.; Kuczera, G. Comparing three methods to form regions for design rainfall statistics: Two case studies in Australia. J. Hydrol. 2015, 527, 62–76. [Google Scholar] [CrossRef]
- Molina, J.L.; Zazo, S.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Innovative analysis of runoff temporal behavior through bayesian networks. Water 2016, 8, 484. [Google Scholar] [CrossRef]
- Little, M.A.; Rodda, H.J.; McSharry, P.E. Bayesian objective classification of extreme UK daily rainfall for flood risk applications. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 3033–3060. [Google Scholar]
- Ombadi, M.; Nguyen, P.; Sorooshian, S.; Hsu, K.L. Retrospective analysis and Bayesian model averaging of CMIP6 precipitation in the Nile River Basin. J. Hydrometeorol. 2021, 22, 217–229. [Google Scholar]
- Ossandón, Á.; Rajagopalan, B.; Kleiber, W. Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis. J. Hydrol. 2021, 600, 126499. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Le, X.H.; Anh, D.T.; Kim, S.H.; Bae, D.H. Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm. J. Hydrol. 2022, 606, 127445. [Google Scholar]
- Zorzetto, E.; Canale, A.; Marani, M. A Bayesian non-asymptotic extreme value model for daily rainfall data. J. Hydrol. 2024, 628, 130378. [Google Scholar]
- Gronewold, A.D.; Qian, S.S.; Wolpert, R.L.; Reckhow, K.H. Calibrating and validating bacterial water quality models: A Bayesian approach. Water Res. 2009, 43, 2688–2698. [Google Scholar]
- Jin, X.; Xu, C.Y.; Zhang, Q.; Singh, V.P. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J. Hydrol. 2010, 383, 147–155. [Google Scholar]
- Haddad, K.; Egodawatta, P.; Rahman, A.; Goonetilleke, A. Uncertainty analysis of pollutant build-up modelling based on a Bayesian weighted least squares approach. Sci. Total Environ. 2013, 449, 410–417. [Google Scholar] [CrossRef]
- Egodawatta, P.; Haddad, K.; Rahman, A.; Goonetilleke, A. A Bayesian regression approach to assess uncertainty in pollutant wash-off modelling. Sci. Total Environ. 2014, 479, 233–240. [Google Scholar]
- Zhao, Y.; Sharma, A.; Sivakumar, B.; Marshall, L.; Wang, P.; Jiang, J. A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments. Environ. Model. Softw. 2014, 57, 216–226. [Google Scholar]
- Liang, S.; Jia, H.; Xu, C.; Xu, T.; Melching, C. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir. Sci. Total Environ. 2016, 560, 44–54. [Google Scholar]
- Peng, Z.; Hu, Y.; Liu, G.; Hu, W.; Zhang, H.; Gao, R. Calibration and quantifying uncertainty of daily water quality forecasts for large lakes with a Bayesian joint probability modelling approach. Water Res. 2020, 185, 116162. [Google Scholar] [PubMed]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. A Bayesian approach to model the trends and variability in urban stormwater quality associated with catchment and hydrologic parameters. Water Res. 2021, 197, 117076. [Google Scholar]
- Jackson-Blake, L.A.; Clayer, F.; Haande, S.; Sample, J.E.; Moe, S.J. Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network. Hydrol. Earth Syst. Sci. 2022, 26, 3103–3124. [Google Scholar] [CrossRef]
- Chowdhury, A.; Egodawatta, P. Automatic model calibration of combined hydrologic, hydraulic and stormwater quality models using approximate Bayesian computation. Water Sci. Technol. 2022, 86, 321–332. [Google Scholar]
- Spezia, L.; Gibbs, S.; Glendell, M.; Helliwell, R.; Paroli, R.; Pohle, I. Bayesian analysis of high-frequency water temperature time series through Markov switching autoregressive models. Environ. Model. Softw. 2023, 167, 105751. [Google Scholar]
- Zhang, C.; Nong, X.; Behzadian, K.; Campos, L.C.; Chen, L.; Shao, D. A new framework for water quality forecasting coupling causal inference, time-frequency analysis and uncertainty quantification. J. Environ. Manag. 2024, 350, 119613. [Google Scholar]
- Nadiri, A.A.; Chitsazan, N.; Tsai, F.T.C.; Moghaddam, A.A. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. J. Hydrol. Eng. 2014, 19, 520–532. [Google Scholar]
- Camacho, R.A.; Martin, J.L.; McAnally, W.; Díaz-Ramirez, J.; Rodriguez, H.; Sucsy, P.; Zhang, S. A comparison of Bayesian methods for uncertainty analysis in hydraulic and hydrodynamic modeling. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 1372–1393. [Google Scholar]
- Shrestha, R.; Kozlowski, T. Inverse uncertainty quantification of input model parameters for thermal-hydraulics simulations using expectation–maximization under Bayesian framework. J. Appl. Stat. 2016, 43, 1011–1026. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Bayesian flood forecasting methods: A review. J. Hydrol. 2017, 551, 340–351. [Google Scholar] [CrossRef]
- Liu, Z.; Merwade, V. Accounting for model structure, parameter and input forcing uncertainty in flood inundation modeling using Bayesian model averaging. J. Hydrol. 2018, 565, 138–149. [Google Scholar] [CrossRef]
- Garcia, R.; Costa, V.; Silva, F. Bayesian rating curve modeling: Alternative error model to improve low-flow uncertainty estimation. J. Hydrol. Eng. 2020, 25, 04020012. [Google Scholar] [CrossRef]
- Yin, J.; Medellín-Azuara, J.; Escriva-Bou, A.; Liu, Z. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change. Sci. Total Environ. 2021, 769, 144715. [Google Scholar] [CrossRef]
- Badjadi, M.A.; Zhu, H.; Zhang, C.; Safdar, M. A Bayesian Network Model for Risk Management during Hydraulic Fracturing Process. Water 2023, 15, 4159. [Google Scholar] [CrossRef]
- Pourahari, A.; Amini, R.; Yousefi-Khoshqalb, E. Advancing Nodal Leakage Estimation in Decentralized Water Networks: Integrating Bayesian Optimization, Realistic Hydraulic Modeling, and Data-Driven Approaches. Sustain. Cities Soc. 2024, 112, 105612. [Google Scholar] [CrossRef]
- Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. J. Hydrol. 2016, 540, 623–640. [Google Scholar] [CrossRef]
- Alexander, R.B.; Schwarz, G.E.; Boyer, E.W. Advances in quantifying streamflow variability across continental scales: 2. Improved model regionalization and prediction uncertainties using hierarchical Bayesian methods. Water Resour. Res. 2019, 55, 11061–11087. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Regional flood frequency analysis: Evaluation of regions in cluster space using support vector regression. Nat. Hazards 2020, 102, 489–517. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Hsu, K.C. Bayesian integration using resistivity and lithology for improving estimation of hydraulic conductivity. Water Resour. Res. 2021, 57, e2020WR027346. [Google Scholar] [CrossRef]
- Xu, H.; Song, S.; Li, J.; Guo, T. Hybrid model for daily runoff interval predictions based on Bayesian inference. Hydrol. Sci. J. 2023, 68, 62–75. [Google Scholar] [CrossRef]
- Sheikh, M.R.; Coulibaly, P. Review of Recent Developments in Hydrologic Forecast Merging Techniques. Water 2024, 16, 301. [Google Scholar] [CrossRef]
- Sattari, A.; Jafarzadegan, K.; Moradkhani, H. Enhancing streamflow predictions with machine learning and Copula-Embedded Bayesian model averaging. J. Hydrol. 2024, 643, 131986. [Google Scholar] [CrossRef]
- George, J.; Athira, P. Bayesian Framework for Uncertainty Quantification and Bias Correction of Projected Streamflow in Climate Change Impact Assessment. Water Resour. Manag. 2024, 38, 4499–4516. [Google Scholar] [CrossRef]
- Ponce Romero, J.M.; Hallett, S.H.; Jude, S. Leveraging big data tools and technologies: Addressing the challenges of the water quality sector. Sustainability 2017, 9, 2160. [Google Scholar] [CrossRef]
- Fer, I.; Kelly, R.; Moorcroft, P.R.; Richardson, A.D.; Cowdery, E.M.; Dietze, M.C. Linking big models to big data: Efficient ecosystem model calibration through Bayesian model emulation. Biogeosciences 2018, 15, 5801–5830. [Google Scholar] [CrossRef]
- Monrat, A.A.; Islam, R.U.; Hossain, M.S.; Andersson, K. Challenges and opportunities of using big data for assessing flood risks. In Applications of Big Data Analytics: Trends, Issues, and Challenges; Springer: Cham, Switzerland, 2018; pp. 31–42. [Google Scholar]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian network modelling: Integration of modelling technologies. Environ. Model. Softw. 2019, 111, 386–393. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, Y.; Feng, J. SMOTE-Boost-based sparse Bayesian model for flood prediction. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 78. [Google Scholar] [CrossRef]
- Donratanapat, N.; Samadi, S.; Vidal, J.M.; Tabas, S.S. A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities. Environ. Model. Softw. 2020, 133, 104828. [Google Scholar] [CrossRef]
- Gaffoor, Z.; Pietersen, K.; Jovanovic, N.; Bagula, A.; Kanyerere, T. Big data analytics and its role to support groundwater management in the southern African development community. Water 2020, 12, 2796. [Google Scholar] [CrossRef]
- Yuan, F.; Fan, C.; Farahmand, H.; Coleman, N.; Esmalian, A.; Lee, C.C.; Patrascu, F.I.; Zhang, C.; Dong, S.; Mostafavi, A. Smart flood resilience: Harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness. Environ. Res. Infrastruct. Sustain. 2022, 2, 025006. [Google Scholar]
- Tanguy, M.; Eastman, M.; Chevuturi, A.; Magee, E.; Cooper, E.; Johnson, R.H.; Facer-Childs, K.; Hannaford, J. Optimising ensemble streamflow predictions with bias-correction and data assimilation techniques. Hydrol. Earth Syst. Sci. Discuss. 2024, 2024, 1–41. [Google Scholar]
- Leu, S.S.; Bui, Q.N. Leak prediction model for water distribution networks created using a Bayesian network learning approach. Water Resour. Manag. 2016, 30, 2719–2733. [Google Scholar]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Feng, X. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Adv. Water Resour. 2017, 110, 445–458. [Google Scholar]
- Jäger, W.S.; Christie, E.K.; Hanea, A.M.; Den Heijer, C.; Spencer, T. A Bayesian network approach for coastal risk analysis and decision making. Coast. Eng. 2018, 134, 48–61. [Google Scholar]
- Chen, J.; Zhong, P.A.; An, R.; Zhu, F.; Xu, B. Risk analysis for real-time flood control operation of a multi-reservoir system using a dynamic Bayesian network. Environ. Model. Softw. 2019, 111, 409–420. [Google Scholar]
- Mihunov, V.V.; Lam, N.S. Modeling the dynamics of drought resilience in South-Central United States using a Bayesian Network. Appl. Geogr. 2020, 120, 102224. [Google Scholar]
- Das, P.; Chanda, K. Bayesian Network based modeling of regional rainfall from multiple local meteorological drivers. J. Hydrol. 2020, 591, 125563. [Google Scholar]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar]
- Xie, X.; Huang, L.; Marson, S.M.; Wei, G. Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Nat. Hazards 2023, 117, 3307–3329. [Google Scholar]
- Albert, C.G.; Callies, U.; von Toussaint, U. A Bayesian approach to the estimation of parameters and their interdependencies in environmental modeling. Entropy 2022, 24, 231. [Google Scholar] [CrossRef]
- Martina, M.L.V.; Todini, E.; Libralon, A. Rainfall thresholds for flood warning systems: A Bayesian decision approach. In Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models; Springer: Berlin/Heidelberg, Germany, 2009; pp. 203–227. [Google Scholar]
- Pagano, A.; Giordano, R.; Portoghese, I.; Fratino, U.; Vurro, M. A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Nat. Hazards 2014, 74, 2193–2227. [Google Scholar]
- Bertone, E.; Sahin, O.; Richards, R.; Roiko, A. Extreme events, water quality and health: A participatory Bayesian risk assessment tool for managers of reservoirs. J. Clean. Prod. 2016, 135, 657–667. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar]
- Roozbahani, A.; Ebrahimi, E.; Banihabib, M.E. A framework for ground water management based on bayesian network and MCDM techniques. Water Resour. Manag. 2018, 32, 4985–5005. [Google Scholar]
- Phan, T.D.; Smart, J.C.; Stewart-Koster, B.; Sahin, O.; Hadwen, W.L.; Dinh, L.T.; Tahmasbian, I.; Capon, S.J. Applications of Bayesian networks as decision support tools for water resource management under climate change and socio-economic stressors: A critical appraisal. Water 2019, 11, 2642. [Google Scholar] [CrossRef]
- Kostyuchenko, Y.V.; Yuschenko, M.; Kopachevsky, I.; Artemenko, I. Bayes Decision-Making Systems for Quantitative Assessment of Hydrological Climate-Related Risk using Satellite Data. In Mathematical Modelling of System Resilience; River Publishers: Rome, Italy, 2022; pp. 113–141. [Google Scholar]
- Garzon, J.L.; Ferreira, Ó.; Zózimo, A.C.; Fortes, C.J.E.M.; Ferreira, A.M.; Pinheiro, L.V.; Reis, M.T. Development of a Bayesian networks-based early warning system for wave-induced flooding. Int. J. Disaster Risk Reduct. 2023, 96, 103931. [Google Scholar]
- Huang, T.; Merwade, V. Uncertainty analysis and quantification in flood insurance rate maps using Bayesian model averaging and hierarchical BMA. J. Hydrol. Eng. 2023, 28, 04022038. [Google Scholar]
- Lu, Y.; Zhai, G.; Zhou, S. An integrated Bayesian networks and Geographic information system (BNs-GIS) approach for flood disaster risk assessment: A case study of Yinchuan, China. Ecol. Indic. 2024, 166, 112322. [Google Scholar]
- Tanim, A.H.; Smith-Lewis, C.; Downey, A.R.; Imran, J.; Goharian, E. Bayes_Opt-SWMM: A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM. Environ. Model. Softw. 2024, 179, 106122. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, Q.; Jia, Y.; Tang, H.; Zhang, H. Attribution of hydrological droughts in large river-connected lakes: Insights from an explainable machine learning model. Sci. Total Environ. 2024, 952, 175999. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46, W05521. [Google Scholar] [CrossRef]
- Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Van Griensven, A.; Van der Zee, S.E. New challenges in integrated water quality modelling. Hydrol. Process. 2010, 24, 3447–3461. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I.; Singh, S. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstration using a Bayesian method. J. Hydrol. 2018, 560, 530–545. [Google Scholar] [CrossRef]
- Hernández, F.; Liang, X. Hybridizing Bayesian and variational data assimilation for high-resolution hydrologic forecasting. Hydrol. Earth Syst. Sci. 2018, 22, 5759–5779. [Google Scholar] [CrossRef]
- DeChant, C.M.; Moradkhani, H. Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and sequential Bayesian combination. J. Hydrol. 2014, 519, 2967–2977. [Google Scholar] [CrossRef]
- Qamar, S.; Khalique, A.; Grzegorczyk, M.A. On the Bayesian network based data mining framework for the choice of appropriate time scale for regional analysis of drought Hazard. Theor. Appl. Climatol. 2021, 143, 1677–1695. [Google Scholar] [CrossRef]
- Wu, X.; Marshall, L.; Sharma, A. Quantifying input error in hydrologic modeling using the Bayesian error analysis with reordering (BEAR) approach. J. Hydrol. 2021, 598, 126202. [Google Scholar] [CrossRef]
- Yoon, H.N.; Marshall, L.; Sharma, A.; Kim, S. Bayesian model calibration using surrogate streamflow in ungauged catchments. Water Resour. Res. 2022, 58, e2021WR031287. [Google Scholar] [CrossRef]
- Zou, H.; Marshall, L.; Sharma, A. Characterizing Errors Using Satellite Metadata for Eco-Hydrological Model Calibration. Water Resour. Res. 2023, 59, e2022WR033978. [Google Scholar] [CrossRef]
- Liu, Y.; Weerts, A.H.; Clark, M.; Hendricks Franssen, H.J.; Kumar, S.; Moradkhani, H.; Seo, D.J.; Schwanenberg, D.; Smith, P.; Van Dijk, A.I.; et al. Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci. 2012, 16, 3863–3887. [Google Scholar] [CrossRef]
- Sadegh, M.; Vrugt, J.A. Approximate bayesian computation using markov chain monte carlo simulation: Dream(ABC). Water Resour. Res. 2014, 50, 6767–6787. [Google Scholar] [CrossRef]
- Kavetski, D.; Fenicia, F.; Reichert, P.; Albert, C. Signature-domain calibration of hydrological models using approximate Bayesian computation: Theory and comparison to existing applications. Water Resour. Res. 2018, 54, 4059–4083. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Sources of hydrological model uncertainties and advances in their analysis. Water 2021, 13, 28. [Google Scholar] [CrossRef]
- Gupta, A.; Govindaraju, R.S. Uncertainty quantification in watershed hydrology: Which method to use? J. Hydrol. 2023, 616, 128749. [Google Scholar] [CrossRef]
- Saha, S.; Bradley, J.R. Incorporating Subsampling into Bayesian Models for High-Dimensional Spatial Data. arXiv 2023, arXiv:2305.132213, 11–13. [Google Scholar] [CrossRef]
- Ulzega, S.; Albert, C. Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model. Hydrol. Earth Syst. Sci. 2023, 27, 2935–2950. [Google Scholar] [CrossRef]
- Andraos, C. Breaking Uncertainty Barriers: Approximate Bayesian Computation Advances in Rainfall–Runoff Modeling. Water 2024, 16, 3499. [Google Scholar] [CrossRef]
- Nizeyimana, P.; Lee, K.E.; Kim, G. Bayesian Estimation of Neyman–Scott Rectangular Pulse Model Parameters in Comparison with Other Parameter Estimation Methods. Water 2024, 16, 2515. [Google Scholar] [CrossRef]
- Kuczera, G. Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour. Res. 1999, 35, 1551–1557. [Google Scholar] [CrossRef]
- Kavetski, D.; Kuczera, G.; Franks, S.W. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 2006, 42, W03407. [Google Scholar] [CrossRef]
- Kavetski, D.; Kuczera, G.; Franks, S.W. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour. Res. 2006, 42, W03408. [Google Scholar] [CrossRef]
- Kuczera, G.; Kavetski, D.; Franks, S.; Thyer, M. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. J. Hydrol. 2006, 331, 161–177. [Google Scholar] [CrossRef]
- Thyer, M.; Renard, B.; Kavetski, D.; Kuczera, G.; Franks, S.W.; Srikanthan, S. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis. Water Resour. Res. 2009, 45, W00B14. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, F.; Yu, B.; Zong, Z. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting. J. Hydrol. 2011, 409, 696–709. [Google Scholar] [CrossRef]
- Ouarda, T.B.; El-Adlouni, S. Bayesian nonstationary frequency analysis of hydrological variables. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 496–505. [Google Scholar] [CrossRef]
- Gui, Z.; Zhang, F.; Yue, K.; Lu, X.; Chen, L.; Wang, H. Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method. Water 2024, 16, 1126. [Google Scholar] [CrossRef]
- van Dam, A.A.; Kipkemboi, J.; Rahman, M.M.; Gettel, G.M. Linking hydrology, ecosystem function, and livelihood outcomes in African papyrus wetlands using a Bayesian Network model. Wetlands 2013, 33, 381–397. [Google Scholar] [CrossRef]
- Kumari, N.; Pandey, S. Sustainability assessment of jumar river in Ranchi district of Jharkhand using river sustainability Bayesian network (RSBN) model Approach. In Ecological Significance of River Ecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 407–428. [Google Scholar]
- Kneier, F.; Woltersdorf, L.; Peiris, T.A.; Döll, P. Participatory Bayesian Network modeling of climate change risks and adaptation regarding water supply: Integration of multi-model ensemble hazard estimates and local expert knowledge. Environ. Model. Softw. 2023, 168, 105764. [Google Scholar] [CrossRef]
- Dubbert, M.; Couvreur, V.; Kübert, A.; Werner, C. Plant water uptake modelling: Added value of cross-disciplinary approaches. Plant Biol. 2023, 25, 32–42. [Google Scholar] [CrossRef]
- Rampinelli, C.G.; Knack, I.; Smith, T. Flood mapping uncertainty from a restoration perspective: A practical case study. Water 2020, 12, 1948. [Google Scholar] [CrossRef]
- Achite, M.; Banadkooki, F.B.; Ehteram, M.; Bouharira, A.; Ahmed, A.N.; Elshafie, A. Exploring Bayesian model averaging with multiple ANNs for meteorological drought forecasts. Stoch. Environ. Res. Risk Assess. 2022, 36, 1835–1860. [Google Scholar] [CrossRef]
- Hsu, S.H.; Ho, Y.F.; Hsu, T.H.; Lee, M.T. Constructing a Risk Assessment Model for Marine Protected Areas Using Bayesian Network. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4846408 (accessed on 5 December 2024). [CrossRef]
- Kuczera, G. Correlated rating curve error in flood frequency inference. Water Resour. Res. 1996, 32, 2119–2127. [Google Scholar] [CrossRef]
- Kuczera, G. Uncorrelated measurement error in flood frequency inference. Water Resour. Res. 1992, 28, 183–188. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 1995. [Google Scholar]
- Sorooshian, S.; Gupta, V.K. The analysis of structural identifiability: Theory and application to conceptual rainfall-runoff models. Water Resour. Res. 1985, 21, 487–495. [Google Scholar] [CrossRef]
- Beven, K. How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci. 2001, 5, 1–12. [Google Scholar] [CrossRef]
- Engeland, K.; Gottschalk, L. Bayesian estimation of parameters in a regional hydrological model. Hydrol. Earth Syst. Sci. 2002, 6, 883–898. [Google Scholar] [CrossRef]
- Wu, W.; Clark, J.S.; Vose, J.M. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. J. Hydrol. 2010, 394, 436–446. [Google Scholar] [CrossRef]
- Lima, C.H.; Lall, U. Spatial scaling in a changing climate: A hierarchical bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J. Hydrol. 2010, 383, 307–318. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H. A hierarchical Bayesian approach for the analysis of climate change impact on runoff extremes. Hydrol. Process. 2014, 28, 6292–6308. [Google Scholar]
- Smith, T.; Marshall, L.; Sharma, A. Modeling residual hydrologic errors with Bayesian inference. J. Hydrol. 2015, 528, 29–37. [Google Scholar]
- Cai, C.; Wang, J.; Li, Z. Assessment and modelling of uncertainty in precipitation forecasts from TIGGE using fuzzy probability and Bayesian theory. J. Hydrol. 2019, 577, 123995. [Google Scholar]
- Madadgar, S.; AghaKouchak, A.; Shukla, S.; Wood, A.W.; Cheng, L.; Hsu, K.L.; Svoboda, M. A hybrid statistical-dynamical framework for meteorological drought prediction: Application to the southwestern United States. Water Resour. Res. 2016, 52, 5095–5110. [Google Scholar]
- Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; Li, L. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water 2019, 11, 579. [Google Scholar]
- Wu, Y.B.; Xue, L.Q.; Liu, Y.H. Local and regional flood frequency analysis based on hierarchical Bayesian model in Dongting Lake Basin, China. Water Sci. Eng. 2019, 12, 253–262. [Google Scholar]
- Bayat, B.; Hosseini, K.; Nasseri, M.; Karami, H. Challenge of rainfall network design considering spatial versus spatiotemporal variations. J. Hydrol. 2019, 574, 990–1002. [Google Scholar]
- Das, P.; Chanda, K. A Bayesian network approach for understanding the role of large-scale and local hydro-meteorological variables as drivers of basin-scale rainfall and streamflow. Stoch. Environ. Res. Risk Assess. 2023, 37, 1535–1556. [Google Scholar] [CrossRef]
- Smith, J.D.; Lamontagne, J.R.; Jasek, M. Considering uncertainty of historical ice jam flood records in a Bayesian frequency analysis for the Peace-Athabasca Delta. Water Resour. Res. 2024, 60, e2022WR034377. [Google Scholar] [CrossRef]
- Costa, V.; Fernandes, W. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. J. Hydrol. 2017, 554, 137–154. [Google Scholar]
- Kou, L.; Mao, Y.; Lin, Z.; Gao, H.; Chu, Z.; Chen, A. Error modeling and hierarchical Bayesian fusion for spaceborne and ground radar rainfall data. J. Hydrol. 2024, 629, 130599. [Google Scholar]
- Sreeparvathy, V.; Srinivas, V.V. A Bayesian Fuzzy Clustering Approach for Design of Precipitation Gauge Network Using Merged Remote Sensing and Ground-Based Precipitation Products. Water Resour. Res. 2022, 58, e2021WR030612. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review. J. Hydrol. 2021, 598, 126266. [Google Scholar]
- Li, D.; Marshall, L.; Liang, Z.; Sharma, A.; Zhou, Y. Bayesian LSTM with stochastic variational inference for estimating model uncertainty in process-based hydrological models. Water Resour. Res. 2021, 57, e2021WR029772. [Google Scholar]
- Quilty, J.; Jahangir, M.S.; You, J.; Hughes, H.; Hah, D.; Tzoganakis, I. Bayesian extreme learning machines for hydrological prediction uncertainty. J. Hydrol. 2023, 626, 130138. [Google Scholar]
- Ren, W.W.; Yang, T.; Huang, C.S.; Xu, C.Y.; Shao, Q.X. Improving monthly streamflow prediction in alpine regions: Integrating HBV model with Bayesian neural network. Stoch. Environ. Res. Risk Assess. 2018, 32, 3381–3396. [Google Scholar]
- Vasheghani Farahani, E.; Massah Bavani, A.R.; Roozbahani, A. Enhancing reservoir inflow forecasting precision through Bayesian Neural Network modeling and atmospheric teleconnection pattern analysis. Stoch. Environ. Res. Risk Assess. 2025, 39, 205–229. [Google Scholar] [CrossRef]
- Nair, P.S.; Ezhilarasan, G. Bayesian Models for Weather Prediction: Using Remote Sensing Data to Improve Forecast Accuracy. In International Conference on Machine in Telligence for Research & Innovations; Springer Nature: Singapore, 2023; pp. 327–343. [Google Scholar]
- Shirzadi, A.; Asadi, S.; Shahabi, H.; Ronoud, S.; Clague, J.J.; Khosravi, K.; Pham, B.T.; Ahmad, B.B.; Bui, D.T. A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Eng. Appl. Artif. Intell. 2020, 96, 103971. [Google Scholar]
- Sun, L.; Seidou, O.; Nistor, I.; Liu, K. Review of the Kalman-type hydrological data assimilation. Hydrol. Sci. J. 2016, 61, 2348–2366. [Google Scholar]
- Khaki, M.; Ait-El-Fquih, B.; Hoteit, I.; Forootan, E.; Awange, J.; Kuhn, M. Unsupervised ensemble Kalman filtering with an uncertain constraint for land hydrological data assimilation. J. Hydrol. 2018, 564, 175–190. [Google Scholar]
- Ghorbanidehno, H.; Kokkinaki, A.; Lee, J.; Darve, E. Recent developments in fast and scalable inverse modeling and data assimilation methods in hydrology. J. Hydrol. 2020, 591, 125266. [Google Scholar] [CrossRef]
- Maxwell, D.H.; Jackson, B.M.; McGregor, J. Constraining the ensemble Kalman filter for improved streamflow forecasting. J. Hydrol. 2018, 560, 127–140. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Yan, H. Enhancing hydrologic data assimilation by evolutionary particle filter and Markov chain Monte Carlo. Adv. Water Resour. 2018, 111, 192–204. [Google Scholar] [CrossRef]
- Jamal, A.; Linker, R. Covariance-Based Selection of Parameters for Particle Filter Data Assimilation in Soil Hydrology. Water 2022, 14, 3606. [Google Scholar] [CrossRef]
- García-Alén, G.; Hostache, R.; Cea, L.; Puertas, J. Joint assimilation of satellite soil moisture and streamflow data for the hydrological application of a two-dimensional shallow water model. J. Hydrol. 2023, 621, 129667. [Google Scholar] [CrossRef]
- Lima, C.H.; Lall, U. Climate informed monthly streamflow forecasts for the Brazilian hydropower network using a periodic ridge regression model. J. Hydrol. 2010, 380, 438–449. [Google Scholar] [CrossRef]
- Bracken, C.; Holman, K.D.; Rajagopalan, B.; Moradkhani, H. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resour. Res. 2018, 54, 243–255. [Google Scholar] [CrossRef]
- Prates, M.O.; Dey, D.K.; Willig, M.R.; Yan, J. Transformed Gaussian Markov random fields and spatial modeling of species abundance. Spat. Stat. 2015, 14, 382–399. [Google Scholar] [CrossRef]
- Ferreira, M.A. Proper Gaussian Markov Random Fields. In Modeling Spatio-Temporal Data; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 1–23. [Google Scholar]
- Wen, Y.; Yang, A.; Kong, X.; Su, Y. A Bayesian-model-averaging copula method for bivariate hydrologic correlation analysis. Front. Environ. Sci. 2022, 9, 744462. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. FB-STEP: A fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data. Expert Syst. Appl. 2019, 117, 211–227. [Google Scholar] [CrossRef]
- Santos-Fernandez, E.; Ver Hoef, J.M.; Peterson, E.E.; McGree, J.; Isaak, D.J.; Mengersen, K. Bayesian spatio-temporal models for stream networks. Comput. Stat. Data Anal. 2022, 170, 107446. [Google Scholar]
- Dehghani, M.; Saghafian, B.; Rivaz, F.; Khodadadi, A. Monthly stream flow forecasting via dynamic spatio-temporal models. Stoch. Environ. Res. Risk Assess. 2015, 29, 861–874. [Google Scholar]
- Takeshita, K.M.; Iwasaki, Y. Application of a Bayesian structural time series model for evaluating 11-year variation in pH in the headwaters of the Tama River, Japan. Limnology 2023, 24, 227–234. [Google Scholar]
- McEachran, Z.P.; Kietzmann, J.; Johnston, M. Parsimonious streamflow forecasting system based on a dynamical systems approach. J. Hydrol. 2024, 641, 131776. [Google Scholar]
- Martino, S.; Riebler, A. Integrated nested Laplace approximations (INLA). arXiv 2019, arXiv:1907.01248. [Google Scholar]
- Reichert, P.; Ammann, L.; Fenicia, F. Potential and challenges of investigating intrinsic uncertainty of hydrological models with stochastic, time-dependent parameters. Water Resour. Res. 2021, 57, e2020WR028400. [Google Scholar] [CrossRef]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A probabilistic programming language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar]
- Gelman, A.; Vehtari, A.; Simpson, D.; Margossian, C.C.; Carpenter, B.; Yao, Y.; Kennedy, L.; Gabry, J.; Bürkner, P.C.; Modrák, M. Bayesian workflow. arXiv 2020, arXiv:2011.01808. [Google Scholar]
- Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. The BUGS project: Evolution, critique and future directions. Stat. Med. 2009, 28, 3049–3067. [Google Scholar]
- Lunn, D.; Jackson, C.; Best, N.; Thomas, A.; Spiegelhalter, D. The BUGS Book. A Practical Introduction to Bayesian Analysis; Chapman Hall: London, UK, 2013. [Google Scholar]
- Thyer, M.; Leonard, M.; Kavetski, D.; Need, S.; Renard, B. The open source RFortran library for accessing R from Fortran, with applications in environmental modelling. Environ. Model. Softw. 2011, 26, 219–234. [Google Scholar]
- Bürkner, P.C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar]
- Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2, e55. [Google Scholar]
- Tang, Y.; Marshall, L.; Sharma, A.; Smith, T. Tools for investigating the prior distribution in Bayesian hydrology. J. Hydrol. 2016, 538, 551–562. [Google Scholar]
- Madsen, H.; Rosbjerg, D. Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling. Water Resour. Res. 1997, 33, 771–781. [Google Scholar]
- Haddad, K.; Rahman, A. Development of a Large Flood Regionalisation Model Considering Spatial Dependence—Application to Ungauged Catchments in Australia. Water 2019, 11, 677. [Google Scholar] [CrossRef]
- Tian, D.; Wang, L. BLP3-SP: A Bayesian Log-Pearson type III model with spatial priors for reducing uncertainty in flood frequency analyses. Water 2022, 14, 909. [Google Scholar] [CrossRef]
- Maranzano, C.J.; Krzysztofowicz, R. Identification of likelihood and prior dependence structures for hydrologic uncertainty processor. J. Hydrol. 2004, 290, 1–21. [Google Scholar] [CrossRef]
- Frey, M.P.; Stamm, C.; Schneider, M.K.; Reichert, P. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas. Water Resour. Res. 2011, 47, W12529. [Google Scholar] [CrossRef]
- Herrera, P.A.; Marazuela, M.A.; Hofmann, T. Parameter estimation and uncertainty analysis in hydrological modeling. Wiley Interdiscip. Rev. Water 2022, 9, e1569. [Google Scholar]
- Raje, D.; Krishnan, R. Bayesian parameter uncertainty modeling in a macroscale hydrologic model and its impact on Indian river basin hydrology under climate change. Water Resour. Res. 2012, 48, W08522. [Google Scholar] [CrossRef]
- Fenicia, F.; Kavetski, D.; Reichert, P.; Albert, C. Signature-domain calibration of hydrological models using approximate Bayesian computation: Empirical analysis of fundamental properties. Water Resour. Res. 2018, 54, 3958–3987. [Google Scholar] [CrossRef]
- Liu, S.; She, D.; Zhang, L.; Xia, J. An improved Approximate Bayesian Computation approach for high-dimensional posterior exploration of hydrological models. Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–46. [Google Scholar]
- Sharma, A.; Wang, H.; Zhang, J.; Lu, M.; Wu, C. Constructing multivariate distribution of rainfall characteristics: A Bayesian vine algorithm. J. Hydrol. 2024, 637, 131392. [Google Scholar] [CrossRef]
- Zhan, X.; Qin, H.; Liu, Y.; Yao, L.; Xie, W.; Liu, G.; Zhou, J. Variational Bayesian neural network for ensemble flood forecasting. Water 2020, 12, 2740. [Google Scholar] [CrossRef]
- Li, D.; Marshall, L.; Liang, Z.; Sharma, A. Hydrologic multi-model ensemble predictions using variational Bayesian deep learning. J. Hydrol. 2022, 604, 127221. [Google Scholar] [CrossRef]
- Ma, J.; Li, R.; Zheng, H.; Li, W.; Rao, K.; Yang, Y.; Wu, B. Multivariate adaptive regression splines-assisted approximate Bayesian computation for calibration of complex hydrological models. J. Hydroinform. 2024, 26, 503–518. [Google Scholar] [CrossRef]
- Mohajerani, H.; Kholghi, M.; Mosaedi, A.; Farmani, R.; Sadoddin, A.; Casper, M. Application of Bayesian decision networks for groundwater resources management under the conditions of high uncertainty and data scarcity. Water Resour. Manag. 2017, 31, 1859–1879. [Google Scholar] [CrossRef]
- Siqueira, P.G.; das Chagas Moura, M.; Duarte, H.O. A Bayesian population variability based method for estimating frequency of maritime accidents. Process Saf. Environ. Prot. 2022, 163, 308–320. [Google Scholar] [CrossRef]
- Biondi, D.; De Luca, D.L. A Bayesian approach for real-time flood forecasting. Phys. Chem. Earth Parts A/B/C 2012, 42, 91–97. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Z.; Jiang, X.; Li, B.; Chen, L. Bayesian theory based self-adapting real-time correction model for flood forecasting. Water 2016, 8, 75. [Google Scholar] [CrossRef]
- Barbetta, S.; Coccia, G.; Moramarco, T.; Todini, E. Real-time flood forecasting downstream river confluences using a Bayesian approach. J. Hydrol. 2018, 565, 516–523. [Google Scholar] [CrossRef]
- Bai, H.; Li, G.; Liu, C.; Li, B.; Zhang, Z.; Qin, H. Hydrological probabilistic forecasting based on deep learning and Bayesian optimization algorithm. Hydrol. Res. 2021, 52, 927–943. [Google Scholar] [CrossRef]
- Xu, C.; Zhong, P.A.; Zhu, F.; Xu, B.; Wang, Y.; Yang, L.; Wang, S.; Xu, S. A hybrid model coupling process-driven and data-driven models for improved real-time flood forecasting. J. Hydrol. 2024, 638, 131494. [Google Scholar] [CrossRef]
- Westra, S.; Thyer, M.; Leonard, M.; Kavetski, D.; Lambert, M. A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resour. Res. 2014, 50, 5090–5113. [Google Scholar] [CrossRef]
- Beven, K. Environmental Modelling: An Uncertain Future? CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hallouin, T.; Bruen, M.; Christie, M.; Bullock, C.; Kelly-Quinn, M. Challenges in using hydrology and water quality models for assessing freshwater ecosystem services: A review. Geosciences 2018, 8, 45. [Google Scholar] [CrossRef]
- Bruen, M.; Hallouin, T.; Christie, M.; Matson, R.; Siwicka, E.; Kelly, F.; Bullock, C.; Feeley, H.B.; Hannigan, E.; Kelly-Quinn, M. A Bayesian modelling framework for integration of ecosystem services into freshwater resources management. Environ. Manag. 2022, 69, 781–800. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Vehtari, A.; Gelman, A.; Sivula, T.; Jylänki, P.; Tran, D.; Sahai, S.; Blomstedt, P.; Cunningham, J.P.; Schiminovich, D.; Robert, C.P. Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data. J. Mach. Learn. Res. 2020, 21, 1–53. [Google Scholar]
- Hao, Y.; Baik, J.; Tran, H.; Choi, M. Quantification of the effect of hydrological drivers on actual evapotranspiration using the Bayesian model averaging approach for various landscapes over Northeast Asia. J. Hydrol. 2022, 607, 127543. [Google Scholar] [CrossRef]
- Kuczera, G.; Parent, E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. J. Hydrol. 1998, 211, 69–85. [Google Scholar] [CrossRef]
(a) | ||
Subcategory | Key Contributions | Selected References |
Early Foundations | Introduction of Bayesian theory into hydrology; early work on parameter estimation and uncertainty quantification | Box & Tiao [1]; Vicens et al. [2]; Sorooshian & Dracup [3]; Kuczera [4,5,6]; Pericchi & Rodriguez-Iturbe [7]; Kitanidis [8]; Kuczera [9] |
Flood-Frequency Analysis | Application of Bayesian methods to combine regional and site-specific data for robust flood-quantile estimation; reduction in bias under short records | Kuczera [5,6]; Stedinger & Cohn [10]; Merz & Thieken [11]; Reis et al. [12]; Seidou et al. [13]; Micevsk & Kuczera [14]; Gaume et al. [15]; Haddad & Rahman [16]; Haddad et al. [17]; Parkes & Demeritt [18]; Guame [19]; Mehmood et al. [20]; Qu et al. [21]; Reis et al. [22]; Shang et al. [23]; Jarajapu et al. [24]; Barna et al. [25]; Lei et al. [26]; Alexandre et al. [27]; Lucas et al. [28] |
Drought Forecasting | Development of probabilistic frameworks for seasonal drought prediction and severity assessment | Madadgar & Moradkhani [29,30]; Avilés et al. [31]; Kim et al. [32] Ali et al. [33]; Raza et al. [34]; Wu et al. [35,36] |
Integration with Geostatistics | Use of Bayesian kriging and spatial analysis to interpolate sparse hydrological data; incorporation of spatial dependencies | Diggle et al. [37]; Renard et al. [38,39]; Nowak et al. [40]; Verdin et al. [41]; Gupta et al. [42]; Yang & Ng [43]; Lima et al. [44]; Senoro et al. [45]; Zaresefat [46] |
(b) | ||
Subcategory | Key Contributions | Selected References |
Flood Risk Assessment | Combination of historical and observed data to probabilistically estimate extreme flood events and derive credible intervals for risk management | Fill & Stedinger [47]; Marshall et al. [48]; Reis & Stedinger [49]; Ribatet et al. [50]; Micevski & Kuczera [14]; Viglione et al. [51]; M. Šraj et al. [52]; Liu et al. [53]; Naseri & Hummel [54]; Rampinelli et al. [55] |
Rainfall Modelling | Improvement of spatiotemporal rainfall predictions and rainfall–runoff model calibration by incorporating prior knowledge and uncertainty quantification | Kuczera [56]; Khan & Coulibaly [57]; Martina et al. [58]; Smith & Marshall [59]; Lima & Lall [60]; Haddad et al. [61]; Molina et al. [62]; Little et al. [63]; Ombadi et al. [64]; Ossandón et al. [65]; Nguyen et al. [66]; Zorzetto et al. [67] |
Water Quality Assessment | Integration of Bayesian inference with machine learning to model pollutant dynamics and assess uncertainty in water quality predictions | Gronewold et al. [68]; Jin et al. [69]; Haddad et al. [70]; Egodawatta et al. [71]; Zhao et al. [72]; Liang et al. [73]; Peng et al. [74]; Perera et al. [75]; Jackson-Blake et al. [76]; Chowdhury & Egodawatta [77]; Spezia et al. [78]; Zhang et al. [79] |
Hydraulic Systems and Modelling | Quantification of uncertainty in hydraulic grade line models and simulation of water networks; application of Bayesian methods to calibrate and validate models | Nadiri et al. [80]; Camacho et al. [81]; Shrestha & Kozlowski [82]; Han & Coulibaly [83]; Liu & Merwade [84]; Garcia et al. [85]; Yin et al. [86]; Chowdhury & Egodawatta [77]; Badjadi et al. [87]; Pourahari et al. [88] |
(c) | ||
Category and Subcategory | Key Contributions | Selected References |
Advancements and Innovations Hybrid Methods | Combination of Bayesian inference with machine learning for improved predictive accuracy and enhanced model robustness | Nadiri et al. [80]; Humphrey et al. [89]; Han & Coulibaly [83]; Alexander et al. [90]; Haddad & Rahman [91]; Cheng & Hsu [92]; Ossandón et al. [65]; Senoro et al. [45]; Jarajapu et al. [2]; Nguyen et al. [66]; Xu et al. [93]; Sheikh & Coulibaly [94]; Sattari et al. [95]; George & Athira [96] |
Big Data Integration | Assimilation of remote sensing data and large-scale datasets into Bayesian frameworks to support real-time updating and model calibration | Ponce Romero et al. [97]; Fer et al. [98]; Monrat et al. [99]; Marcot & Penman [100]; Wu et al. [101]; Donratanapat et al. [102]; Gaffoor et al. [103]; Yuan et al. [104]; Tanguy et al. [105] |
Dynamic Bayesian Networks | Modelling of complex temporal and spatial interactions via network-based approaches, allowing dynamic updating and improved forecasting | Molina et al. [62]; Leu & Bui [106]; Humphrey et al. [89]; Xue et al. [107]; Jäger et al. [108]; Chen et al. [109]; Mihunov & Lam [110]; Das & Chanda [111]; Ma et al. [112]; Jackson-Blake et al. [76]; Xie et al. [113]; Albert et al. [114]; Pourahari et al. [88] |
Bayesian Decision Frameworks | Application of decision theory to balance competing objectives in water-resource management through probabilistic assessment | Martina et al. [58,115]; Pagano et al. [116]; Bertone et al. [117]; Madadgar et al. [118]; Jäger et al. [108]; Roozbahani et al. [119]; Phan et al. [120]; Kostyuchenko et al. [121]; Garzon et al. [122]; Huang & Merwade [123]; Lu et al. [124]; Tanim et al. [125]; Xue et al. [126] |
Challenges Data Quality | Addressing issues related to incomplete, noisy, or sparse datasets which affect the reliability of Bayesian inferences in hydrological modelling | Renard et al. [127]; Rode et al. [128]; Renard et al. [39]; Liu et al. [129]; Hernández & Liang [130]; DeChant & Moradkhani [131]; Qamar et al. [132]; Wu et al. [133]; Yoon et al. [134]; Zhou et al. [135]; Alexandre et al. [27] |
Computational Intensity | Mitigating the high computational demands of advanced Bayesian methods, especially for high-dimensional parameter estimation | Liu et al. [136]; Sadegh & Vrugt [137]; Kavetski et al. [138]; Moges et al. [139]; Gupta & Govindaraju [140]; Saha & Bradley [141]; Ulzega & Albert [142]; Andraos [143]; Nizeyimana [144] |
Parameter Uncertainty | Managing the subjectivity in prior selection and the propagation of uncertainty in parameter estimates, which is critical in influencing posterior outcomes | Kuczera [5]; Kitanidis [8]; Kuczera [145]; Kavetski et al. [146,147]; Kuczera et al. [148]; Thyer et al. [149]; Zhang et al. [150]; Ouarda & El-Adlouni [151]; Haddad et al. [17]; Haddad & Rahman [16,91]; Yoon et al. [134]; Ulzega & Albert [142]; Gui et al. [152]; Andraos [143] |
Interdisciplinary Integration | Bridging statistical modelling with physical hydrology and engaging stakeholders to ensure that probabilistic predictions are actionable and comprehensive | Kuczera [9]; van Dam et al. [153]; Liu et al. [53]; Senoro et al. [45]; Kumari & Pandey [154]; Kneier et al. [155]; Dubbert et al. [156]; Huang & Merwade [123]; Rampinelli et al. [157]; Lu et al. [124] |
Feature/Tool | Stan | WinBUGS | JAGS |
---|---|---|---|
Core Algorithm | Hamiltonian Monte Carlo (HMC) | Gibbs Sampling | Gibbs Sampling |
Ease of Use | Medium (requires coding) | High (graphical interface) | Medium (integrates with R easily) |
Speed/Performance | High | Low | Medium |
Scalability | Excellent (handles complex models) | Limited | Moderate |
Integration | R, Python, CmdStan | Standalone | R (rjags), Python |
Applications | Large-scale and complex models | Basic models | Moderate to complex models |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, K. A Comprehensive Review and Application of Bayesian Methods in Hydrological Modelling: Past, Present, and Future Directions. Water 2025, 17, 1095. https://doi.org/10.3390/w17071095
Haddad K. A Comprehensive Review and Application of Bayesian Methods in Hydrological Modelling: Past, Present, and Future Directions. Water. 2025; 17(7):1095. https://doi.org/10.3390/w17071095
Chicago/Turabian StyleHaddad, Khaled. 2025. "A Comprehensive Review and Application of Bayesian Methods in Hydrological Modelling: Past, Present, and Future Directions" Water 17, no. 7: 1095. https://doi.org/10.3390/w17071095
APA StyleHaddad, K. (2025). A Comprehensive Review and Application of Bayesian Methods in Hydrological Modelling: Past, Present, and Future Directions. Water, 17(7), 1095. https://doi.org/10.3390/w17071095