Main Methods of Regionalization of Minimum Flows, Advantages and Disadvantages and Their Limitations: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Regionalization of Hydrological Model Parameters
3.1.1. Methods Based on Similarity
- Physical similarity
- 2.
- Spatial proximity
3.1.2. Regression-Based Methods
3.2. Regionalization of Hydrological Signatures
4. Discussion
4.1. Advantages and Disadvantages
4.2. Limitations
4.3. Recent Advances
5. Conclusions and Future Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Zhang, Y.; Zhang, L.; Wang, Z. Regionalization of Hydrological Modeling for Predicting Streamflow in Ungauged Catchments: A Comprehensive Review. WIREs Water 2021, 8, e1487. [Google Scholar] [CrossRef]
- Barbosa, S.E.d.S.; Barbosa Júnior, A.R.; da Silva, G.Q.; Campos, E.N.B.; Rodrigues, V.d.C. Geração de modelos de regionalização de vazões máximas, médias de longo período e mínimas de sete dias para a bacia do rio do Carmo, Minas Gerais. Eng. Sanit. Ambient. 2005, 10, 64–71. [Google Scholar]
- Galatto, S.L.; Back, Á.J. Distribuição de Probabilidades Para Determinação de Vazão Mínima de Referência Anual e Sazonal Da Bacia Do Rio Araranguá, Santa Catarina, Brasil. Contrib. A Las Cienc. Soc. 2023, 16, 16000–16016. [Google Scholar]
- Disponibilidade Hídrica Superficial (BHO 2017 5K). Available online: https://metadados.snirh.gov.br/geonetwork/srv/por/catalog.search#/metadata/7ac42372-3605-44a4-bae4-4dee7af1a2f8 (accessed on 8 December 2023).
- SEMARH. Manual Técnico de Outorga 2012; Secretaria do Meio Ambiente e dos Recursos Hídricos: Goiânia, Brazil, 2012. Available online: https://goias.gov.br/meioambiente/wp-content/uploads/sites/33/2015/05/manual_tecnico_de_outorga_versao_01-5f0.pdf (accessed on 22 February 2024).
- Santos, P.; Cunha, A. Outorga de Recursos Hídricos e Vazão Ambiental No Brasil: Perspectivas Metodológicas Frente Ao Desenvolvimento Do Setor Hidrelétrico Na Amazônia. RBRH 2013, 18, 81–95. [Google Scholar]
- ANA. Diagnóstico da Outorga de Direito de Uso de Recursos Hídricos no Brasil, e, Fiscalização dos Usos de Recursos Hídricos no BRASIL; Agência Nacional de Águas: Brasília, DF, Brazil, 2007; ISBN 978-85-89629-28-7. [Google Scholar]
- Departamento de Administración de Recursos Hídricos. Manual de Normas y Procedimientos para la Gestión y Administración de Recursos Hídricos; Ministerio de Obras Públicas, Dirección General de Aguas: Santiago, Chile, 2024; Available online: https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/ec52b24a-d700-43c9-91a1-d323274b00d9/content (accessed on 20 February 2025).
- Ministerio de Ambiente y Desarrollo Sostenible; Instituto de Hidrología, Meteorología y Estudios Ambientales—IDEAM. Guía Metodológica para la Estimación del Caudal Ambiental; Dirección de Gestión Integral del Recurso Hídrico, Subdirección de Hidrología: Bogotá, Colombia, 2017. Available online: https://www.minambiente.gov.co/consulta/resolucion-por-la-cual-se-adopta-la-guia-metodologica-para-la-estimacion-del-caudal-ambiental-en-colombia-y-se-dictan-otras-disposiciones/ (accessed on 20 February 2025).
- Bhuiyan, C. Environmental Flows: Issues and Gaps—A Critical Analysis. Sustain. Sci. 2022, 17, 1109–1128. [Google Scholar]
- Bazzo, K.R.; Guedes, H.A.S.; Castro, A.S.; Siqueira, T.M.; Teixeira-Gandra, C.F.A. Regionalização da vazão Q95: Comparação de métodos para a bacia hidrográfica do Rio Taquari-Antas, RS. Rev. Ambient. Água 2017, 12, 855–870. [Google Scholar]
- Melati, M.D.; Marcuzzo, F.F.N. Simple and Robust Regressions in Flows Regionalization of Q95 in Taquari-Antas River Basin. Ciênc. E Nat. 2016, 38, 722–739. [Google Scholar] [CrossRef]
- Lopes, T.R.; do Prado, G.; Zolin, C.A.; Paulino, J.; Antoniel, L.S. Regionalização de Vazões Máximas e Mínimas Para a Bacia do Rio Ivaí—PR. IRRIGA 2016, 21, 188. [Google Scholar]
- Mello, F.W.P.J.; Pessoa, F.C.L.; Santana, L.R. Regionalização de vazões mínimas da bacia hidrográfica do Rio Mearim no estado do Maranhão. Res. Soc. Dev. 2020, 9, e114962651. [Google Scholar]
- Pruski, F.F.; Nunes, A.d.A.; Rego, F.S.; de Souza, M.F. Extrapolação de equações de regionalização de vazões mínimas: Alternativas para atenuar os riscos. Water Resour. Irrig. Manag.-WRIM 2012, 1, 51–59. [Google Scholar]
- Gerhardt, T.E.; Silveira, D.T.; Neis, I.A.; de Abreu, S.P.; Rodrigues, R.S. Métodos de Pesquisa; Ed. da UFRGS: Porto Alegre, Brazil, 2009; ISBN 978-85-386-0071-8. [Google Scholar]
- Cupak, A. Regionalization Methods for Low Flow Estimation in Ungauged Catchments—A Review. Acta Sci. Pol.-Form. Circumiectus 2020, 19, 21–35. [Google Scholar]
- Bao, Z.; Zhang, J.; Liu, J.; Fu, G.; Wang, G.; He, R.; Yan, X.; Jin, J.; Liu, H. Comparison of Regionalization Approaches Based on Regression and Similarity for Predictions in Ungauged Catchments under Multiple Hydro-Climatic Conditions. J. Hydrol. 2012, 466–467, 37–46. [Google Scholar]
- Odusanya, A.E.; Schulz, K.; Mehdi-Schulz, B. Using a Regionalisation Approach to Evaluate Streamflow Simulated by an Ecohydrological Model Calibrated with Global Land Surface Evaporation from Remote Sensing. J. Hydrol. Reg. Stud. 2022, 40, 101042. [Google Scholar]
- Ditthakit, P.; Pinthong, S.; Salaeh, N.; Binnui, F.; Khwanchum, L.; Pham, Q.B. Using Machine Learning Methods for Supporting GR2M Model in Runoff Estimation in an Ungauged Basin. Sci. Rep. 2021, 11, 19955. [Google Scholar]
- Qi, W.; Chen, J.; Li, L.; Xu, C.-Y.; Li, J.; Xiang, Y.; Zhang, S. Regionalization of Catchment Hydrological Model Parameters for Global Water Resources Simulations. Hydrol. Res. 2022, 53, 441–466. [Google Scholar]
- Cupak, A.; Michalec, B. Regionalisation of Watersheds with Respect to Low Flow. J. Water Land Dev. 2022, 55, 47–55. [Google Scholar]
- Beskow, S.; de Mello, C.R.; Vargas, M.M.; Corrêa, L.d.L.; Caldeira, T.L.; Durães, M.F.; de Aguiar, M.S. Artificial Intelligence Techniques Coupled with Seasonality Measures for Hydrological Regionalization of Q90 under Brazilian Conditions. J. Hydrol. 2016, 541, 1406–1419. [Google Scholar]
- Cupak, A.; Kaczor, G. Determination of Seasonal Indices for the Regionalization of Low Flows in the Upper Vistula River Basin. Water 2023, 15, 246. [Google Scholar] [CrossRef]
- Oudin, L.; Andréassian, V.; Perrin, C.; Michel, C.; Le Moine, N. Spatial Proximity, Physical Similarity, Regression and Ungaged Catchments: A Comparison of Regionalization Approaches Based on 913 French Catchments. Water Resour. Res. 2008, 44, 3. [Google Scholar]
- Farfán, J.F.; Cea, L. Regional Streamflow Prediction in Northwest Spain: A Comparative Analysis of Regionalisation Schemes. J. Hydrol. Reg. Stud. 2023, 47, 101427. [Google Scholar]
- Mekonnen, S.; Dessie, M.; Tadesse, A.; Nega, H.; Zewdu, A. Predicting the Daily Flow in Ungauged Catchments of the Eastern Part of the Upper Blue Nile Basin, Ethiopia. Sustain. Water Resour. Manag. 2023, 9, 71. [Google Scholar]
- Soni, P.; Tripathi, S.; Srivastava, R. A Comparison of Regionalization Methods in Monsoon Dominated Tropical River Basins. J. Water Clim. Change 2021, 12, 1975–1996. [Google Scholar] [CrossRef]
- Garna, R.K.; Fuka, D.R.; Faulkner, J.W.; Collick, A.S.; Easton, Z.M. Watershed Model Parameter Estimation in Low Data Environments. J. Hydrol. Reg. Stud. 2023, 45, 101306. [Google Scholar]
- Jahanshahi, A.; Melsen, L.A.; Patil, S.D.; Goharian, E. Comparing Spatial and Temporal Scales of Hydrologic Model Parameter Transfer: A Guide to Four Climates of Iran. J. Hydrol. 2021, 603, 127099. [Google Scholar]
- Tegegne, G.; Kim, Y.-O. Strategies to Enhance the Reliability of Flow Quantile Prediction in the Gauged and Ungauged Basins. River Res. Appl. 2020, 36, 724–734. [Google Scholar]
- Golian, S.; Murphy, C.; Meresa, H. Regionalization of Hydrological Models for Flow Estimation in Ungauged Catchments in Ireland. J. Hydrol. Reg. Stud. 2021, 36, 100859. [Google Scholar] [CrossRef]
- Sheikh Goodarzi, M.; Jabbarian Amiri, B.; Azarnivand, H.; Waltner, I. Watershed Hydrological Modelling in Data Scarce Regions; Integrating Ecohydrology and Regionalization for the Southern Caspian Sea Basin, Iran. Heliyon 2021, 7, e06833. [Google Scholar]
- Chang, H.; Kjeldsen, T.; McIntyre, N.; Lee, H. Regionalisation of a PDM Model for Catchment Runoff in a Mountainous Region of Korea. KSCE J. Civ. Eng. 2018, 22, 4699–4709. [Google Scholar]
- Cenobio-Cruz, O.; Quintana-Seguí, P.; Barella-Ortiz, A.; Zabaleta, A.; Garrote, L.; Clavera-Gispert, R.; Habets, F.; Beguería, S. Improvement of Low Flows Simulation in the SASER Hydrological Modeling Chain. J. Hydrol. X 2023, 18, 100147. [Google Scholar]
- Prieto, C.; Le Vine, N.; Kavetski, D.; García, E.; Medina, R. Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests. Water Resour. Res. 2019, 55, 4364–4392. [Google Scholar]
- Dal Molin, M.; Kavetski, D.; Albert, C.; Fenicia, F. Exploring Signature-Based Model Calibration for Streamflow Prediction in Ungauged Basins. Water Resour. Res. 2023, 59, e2022WR031929. [Google Scholar]
- McMillan, H.; Westerberg, I.; Branger, F. Five Guidelines for Selecting Hydrological Signatures. Hydrol. Process. 2017, 31, 4757–4761. [Google Scholar] [CrossRef]
- Hingray, B.; Schaefli, B.; Mezghani, A.; Hamdi, Y. Signature-Based Model Calibration for Hydrological Prediction in Mesoscale Alpine Catchments. Hydrol. Sci. J. 2010, 55, 1002–1016. [Google Scholar]
- Abdi, D.; Gebrekristos, S. Regionalization of Low Flow Analysis in Data Scarce Region: The Case of the Lake Abaya-Chamo Sub-Basin, Rift Valley Lakes Basin, Ethiopia. JWMM 2022, 30, C487. [Google Scholar] [CrossRef]
- Abreu, M.C.; Fraga, M.d.S.; de Almeida, L.T.; Silva, F.B.; Cecílio, R.A.; Lyra, G.B.; Delgado, R.C. Streamflow in the Sapucaí River Watershed, Brazil: Probabilistic Modeling, Reference Streamflow, and Regionalization. Phys. Chem. Earth Parts A/B/C 2022, 126, 103133. [Google Scholar]
- Bork, C.K.; Guedes, H.A.S.; Beskow, S.; Fraga, M.D.S.; Tormam, M.F. Minimum Streamflow Regionalization in a Brazilian Watershed under Different Clustering Approaches. An. Acad. Bras. Ciênc. 2021, 93, e20210538. [Google Scholar] [CrossRef]
- Boscarello, L.; Ravazzani, G.; Cislaghi, A.; Mancini, M. Regionalization of Flow-Duration Curves through Catchment Classification with Streamflow Signatures and Physiographic–Climate Indices. J. Hydrol. Eng. 2016, 21, 05015027. [Google Scholar] [CrossRef]
- Konrad, C.; Rumsey, C. Estimating Minimum Streamflow from Measurements at Ungauged Sites in Regions with Streamflow-Gauging Networks. Hydrol. Process. 2019, 33, 2057–2067. [Google Scholar] [CrossRef]
- Ouarda, T.B.M.J.; Charron, C.; Hundecha, Y.; St-Hilaire, A.; Chebana, F. Introduction of the GAM Model for Regional Low-Flow Frequency Analysis at Ungauged Basins and Comparison with Commonly Used Approaches. Environ. Model. Softw. 2018, 109, 256–271. [Google Scholar] [CrossRef]
- Tormam, M.; Guedes, H.; Bork, C.; de Souza Fraga, M. Low Flows Hydrological Regionalization and Definition of Homogeneous Regions Using Multivariate Statistical Analyses in the Uruguai River Watershed, on the Rio Grande Do Sul State Side, Brazil. Rev. Bras. De Geogr. Física 2020, 13, 3078. [Google Scholar] [CrossRef]
- Cupak, A.; Kaczor, G. Regionalization of low flow for chosen catchments of the upper Vistula river basin using non-hierarchical cluster analysis. Időjárás/Q. J. Hung. Meteorol. Serv. 2022, 126, 27–45. [Google Scholar]
- Ferreira, R.G.; da Silva, D.D.; Elesbon, A.A.A.; dos Santos, G.R.; Veloso, G.V.; Fraga, M.d.S.; Fernandes-Filho, E.I. Geostatistical Modeling and Traditional Approaches for Streamflow Regionalization in a Brazilian Southeast Watershed. J. South Am. Earth Sci. 2021, 108, 103355. [Google Scholar] [CrossRef]
- Gaviria, C.; Carvajal-Serna, F. Regionalization of Flow Duration Curves in Colombia. Hydrol. Res. 2022, 53, 1075–1089. [Google Scholar] [CrossRef]
- Elesbon, A.A.A.; Silva, D.D.D.; Sediyama, G.C.; Guedes, H.A.S.; Ribeiro, C.A.A.S.; Ribeiro, C.B.D.M. Multivariate Statistical Analysis to Support the Minimum Streamflow Regionalization. Eng. Agríc. 2015, 35, 838–851. [Google Scholar]
- Basso, R.; Santana, K.; Honório, M.; Costa, I.; Leitão, S.; Albuquerque, A.; Scalize, P. Identification of Homogeneous Regions of Specific Minimum Flows in the State of Goiás, Brazil. J. Ecol. Eng. 2023, 24, 357–367. [Google Scholar]
- Coelho, C.; Silva, D.; Filizola, N., Jr.; Pereira, S.; Moreira, M. Identification of Hydrologically Homogeneous Regions in the Solimões River Basin in the Amazon Region. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Rodrigues, J.A.M.; Viola, M.R.; Mello, C.R.D.; Morais, M.A.V. Hydrological Regionalization of Streamflows for the Tocantins River Basin in Brazilian Cerrado Biome. Rev. Ambiente Água 2021, 16, e2716. [Google Scholar]
- Amorim, J.d.S.; Junqueira, R.; Mantovani, V.A.; Viola, M.R.; de Mello, C.R.; Bento, N.L. Streamflow Regionalization for the Mortes River Basin Upstream from the Funil Hydropower Plant, MG. Rev. Ambient. Água 2020, 15, e2495. [Google Scholar]
- Matos, T.S.; Uliana, E.M.; Martins, C.A.d.S.; Rapalo, L.M.C. Regionalization of Maximum, Minimum and Mean Streamflows for the Juruena River Basin, Brazil. Rev. Ambient. Água 2020, 15, e2418. [Google Scholar]
- Lisboa, L.; Moreira, M.C.; da Silva, D.D.; Pruski, F.F. Estimativa e Regionalização das Vazões Mínimas e Média na Bacia do Rio Paracatu. Rev. Eng. Na Agric.-Reveng. 2008, 16, 471–479. [Google Scholar]
- Euclydes, H.; Rubert, O.; Ferreira, P.; Santos, R. Regionalização Hidrológica na Bacia do Alto São Francisco à Montante da Barragem de Três Marias, Minas Gerais. RBRH 2001, 6, 81–105. [Google Scholar]
- Cecilio, R.; Zanetti, S.; Gasparini, K.A.C.; Catrinck, C.N. Evaluation of Low-Flow and Long Term Average Flow Regionalization Methods on Itapemirim River Watershed. Sci. Agrar. 2018, 19, 122–132. [Google Scholar]
- Lopes, T.R.; Zolin, C.A.; Prado, G.D.; Paulino, J.; Almeida, F.T.D. Regionalization of maximum and minimum flow in the teles pires basin, Brazil. Eng. Agríc. 2017, 37, 54–63. [Google Scholar]
- Pruski, F.F.; Rodriguez, R.D.G.; Nunes, A.A.; Pruski, P.L.; Singh, V.P. Low-Flow Estimates in Regions of Extrapolation of the Regionalization Equations: A New Concept. Eng. Agríc. 2015, 35, 808–816. [Google Scholar] [CrossRef]
- Costa, V.; Fernandes, W. Regional Modeling of Long-Term and Annual Flow Duration Curves: Reliability for Information Transfer with Evolutionary Polynomial Regression. J. Hydrol. Eng. 2021, 26, 04020067. [Google Scholar] [CrossRef]
- Araujo, F.C.; Mello, E.L.D.; Gollin, G.M.; Quadros, L.E.D.; Gomes, B.M. Streamflow regionalization in piquiri river basin. Eng. Agríc. 2018, 38, 22–31. [Google Scholar]
- Honório, M.d.S.; Pinheiro, R.V.N.; Costa, I.A.; Scalize, P.S. Comparison of Two Methods for Determining Q95 Reference Flow in the Mouth of the Surface Catchment Basin of the Meia Ponte River, State of Goiás, Brazil. Open Eng. 2020, 10, 469–476. [Google Scholar]
- da Silva, L.A.; da Silva, A.M.; Coelho, G.; Pinto, L.C.; Eduardo, E.N. Vazões mínimas e de referência e rendimento específico para o estado de Minas Gerais. Rev. Bras. De Ciênc. Agrár. 2017, 12, 543–549. [Google Scholar] [CrossRef]
- Ferreira, R.G.; da Silva, D.D.; Elesbon, A.A.A.; Fernandes-Filho, E.I.; Veloso, G.V.; Fraga, M.d.S.; Ferreira, L.B. Machine Learning Models for Streamflow Regionalization in a Tropical Watershed. J. Environ. Manag. 2021, 280, 111713. [Google Scholar] [CrossRef]
- Piol, M.S.; dos Reis, J.A.T.; Rodrigues, M.B.; Mendonça, A.S.F.; da Silva, F.d.G.B.; Lima, A.T.Y. Estimative of reference flows for water resources planning and control: Hydrologic regional indicators application. Rev. Bras. De Ciênc. Ambient. (RBCIAMB) 2023, 58, 171–181. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Palmer, R.; Steinschneider, S. A Hierarchical Bayesian Model for Regionalized Seasonal Forecasts: Application to Low Flows in the Northeastern United States. Water Resour. Res. 2017, 53, 503–521. [Google Scholar] [CrossRef]
- Waseem, M.; Ajmal, M.; Kim, U.; Kim, T.-W. Development and Evaluation of an Extended Inverse Distance Weighting Method for Streamflow Estimation at an Ungauged Site. Hydrol. Res. 2015, 47, 333–343. [Google Scholar]
- Requena, A.I.; Ouarda, T.B.M.J.; Chebana, F. Low-Flow Frequency Analysis at Ungauged Sites Based on Regionally Estimated Streamflows. J. Hydrol. 2018, 563, 523–532. [Google Scholar]
- Castellarin, A.; Camorani, G.; Brath, A. Predicting Annual and Long-Term Flow-Duration Curves in Ungauged Basins. Adv. Water Resour. 2007, 30, 937–953. [Google Scholar]
- Basso, R.; Honório, M.; Costa, I.; Bezerra, N.; Baumann, L.; Silva, F.; Albuquerque, A.; Scalize, P. Comparison between Regionalized Minimum Reference Flow and On-Site Measurements in Hydrographic Basins of Rural Communities in the State of Goiás, Brazil. Water 2022, 14, 1016. [Google Scholar] [CrossRef]
- Gebeyehu, B.M.; Jabir, A.K.; Tegegne, G.; Melesse, A.M. Reliability-Weighted Approach for Streamflow Prediction at Ungauged Catchments. J. Hydrol. 2023, 624, 129935. [Google Scholar]
- Naghettini, M.; Pinto, É.J.d.A. Hidrologia Estatística; CPRM: Belo Horizonte, Brazil, 2007; ISBN 978-85-7499-023-1. [Google Scholar]
Method | Article | Similarity Criteria/Regression Technique |
---|---|---|
Physical similarity | Ditthakit et al. [20] | Similarity index (Equation (1)) |
Qi et al. [21] | Similarity index (Equation (1)) | |
Soni et al. [28] | Distance between attributes of the hydrographic basins | |
Golian et al. [32] | Euclidean distance between attributes of the hydrographic basins | |
Farfán et al. [26] | Euclidean distance between attributes of the hydrographic basins | |
Garna et al. [29] | Comparison between physical attributes of the hydrographic basins, arguing strong Pearson correlation coefficients for variables such as precipitation and temperature | |
Tegegne et al. [31] | Extension of the catchment runoff response similarity (CRRS) approach | |
Mekonnen et al. [27] | Comparable areas | |
Spatial proximity | Ditthakit et al. [20] | - |
Farfán et al. [26] | - | |
Jahanshahi et al. [30] | - | |
Mekonnen et al. [27] | - | |
Qi et al. [21] | - | |
Soni et al. [28] | - | |
Regression-based methods | Cenobio-Cruz et al. [35] | Multiple linear regression |
Chang et al. [34] | Multiple linear regression | |
Ditthakit et al. [20] | Multiple linear regression, Random Forest, M5 model tree | |
Farfán et al. [26] | Multiple linear regression, artificial neural networks | |
Golian et al. [32] | Multiple linear regression, Random Forest | |
Mekonnen et al. [27] | Multiple linear regression | |
Qi et al. [21] | Multiple linear regression | |
Sheikh Goodarzi et al. [33] | Multiple linear regression | |
Soni et al. [28] | Multiple linear regression, artificial neural networks |
Regionalization Approach | Dissimilarity Measure Between Basins | Basin Clustering Technique | Regression Technique |
---|---|---|---|
Minimum flow | |||
Flow duration curve |
Method | Advantages | Disadvantages |
---|---|---|
Regionalization of hydrological model parameters | ||
Physical similarity | The main advantage of the physical similarity method over the linear regression method is that it uses physical and climatic attributes of the basins without requiring the assumption of linearity between them [72]. | This method requires a detailed selection of the most relevant attributes of the basins [26]. |
Spatial proximity | This method does not require basin attribute definition because the hydrological model parameters are transferred from nearby donor basins [26]. | Assuming that the gauged basins exhibit similar hydrological behavior is often inaccurate, potentially leading to significant errors in estimates [65]. |
Regression-based methods |
| |
Regionalization of hydrological signatures | ||
Traditional method |
| |
IL, ILM, C, CM methods * | Methods aimed at overcoming the scarcity of available information, offering an advantage over the traditional method when the existing databases in the basin are limited [58]. | Results from some studies show that the estimation of minimum flows has low accuracy when the section of interest is located in a tributary river reach [48,58]. |
RSBFA | Preferred approach if the objective is to estimate a large number and/or different types of minimum flow quantiles [69]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaca, W.; Vasco, J.; Basso, R. Main Methods of Regionalization of Minimum Flows, Advantages and Disadvantages and Their Limitations: A Review. Water 2025, 17, 1079. https://doi.org/10.3390/w17071079
Vaca W, Vasco J, Basso R. Main Methods of Regionalization of Minimum Flows, Advantages and Disadvantages and Their Limitations: A Review. Water. 2025; 17(7):1079. https://doi.org/10.3390/w17071079
Chicago/Turabian StyleVaca, Walter, Joel Vasco, and Raviel Basso. 2025. "Main Methods of Regionalization of Minimum Flows, Advantages and Disadvantages and Their Limitations: A Review" Water 17, no. 7: 1079. https://doi.org/10.3390/w17071079
APA StyleVaca, W., Vasco, J., & Basso, R. (2025). Main Methods of Regionalization of Minimum Flows, Advantages and Disadvantages and Their Limitations: A Review. Water, 17(7), 1079. https://doi.org/10.3390/w17071079