Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Site Description
2.2. Simulation Model Description
2.3. Mathematical Models Under Different Rainfall Conditions
2.3.1. Mathematical Model Under Average Rainfall Intensity
2.3.2. Mathematical Model Under Random Rainfall Intensity
2.4. Multi-Objective Scatter Search Algorithm
2.4.1. Encoding and Decoding
2.4.2. Initialization
2.4.3. Improving Initial Solution
2.4.4. Reference Set Update
2.4.5. Subset Generation
2.4.6. Path Relinking
2.4.7. “Cost–Benefit” Local Search
3. Results and Discussion
3.1. Sample Data
3.2. Model Verification
3.2.1. Average Rainfall Intensity Model Verification
3.2.2. Random Rainfall Intensity Model Verification
3.3. Simulation Optimization Analysis of Average Rainfall Intensity Model
3.3.1. Comparative Analysis of “Cost–Benefit” Local Search
3.3.2. Optimization Analysis
3.3.3. Comparison of Runoff Reduction Rates Under Different Rainfall Conditions
3.3.4. Optimization of Layout Scheme
3.4. Simulation Optimization Research of Stochastic Rainfall Intensity Model
3.4.1. Optimization Analysis
3.4.2. Comparison of Runoff Reduction Rate Under Different Rainfall Conditions
4. Conclusions
Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Jiang, J.; Zheng, Y.; Hong, Y.; Chung, E.-S.; Shamseldin, A.Y.; Wei, Y.; Wang, X. Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring. Sci. Total Environ. 2021, 753, 142007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chui, T.F.M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 2018, 621, 915–929. [Google Scholar] [CrossRef]
- Chengshuai, L.; Wenzhong, L.; Chenchen, Z.; Tianning, X.; Shengqi, J.; Qiang, W.; Yingying, X.; Caihong, H. BK-SWMM flood simulation framework is being proposed for urban storm flood modeling based on uncertainty parameter crowdsourcing data from a single functional region. J. Environ. Manag. 2023, 344, 118482. [Google Scholar]
- Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Nowak, W. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zeng, P.; Liu, Z.; Li, W.; Zhou, J. Optimization of LID Strategies for Urban CSO Reduction and Cost Efficiency: A Beijing Case Study. Water 2024, 16, 965. [Google Scholar] [CrossRef]
- Khalid, E.G.; Jamal, E.K.; Aziz, S.; Isam, S. Model predictive control based on artificial intelligence and EPA-SWMM model to reduce CSOs impacts in sewer systems. Water Sci. Technol. 2022, 85, 398–408. [Google Scholar]
- Xie, Y.; Wang, H.; Wang, K.; Ge, X.; Ying, X. The Application and Potential of Multi-Objective Optimization Algorithms in Decision-Making for LID Facilities Layout. Water Resour. Manag. 2024, 38, 5403–5417. [Google Scholar] [CrossRef]
- Chenchen, Z.; Chengshuai, L.; Wenzhong, L.; Yehai, T.; Fan, Y.; Yingying, X.; Liyu, Q.; Caihong, H. Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model. Water Resour. Manag. 2023, 37, 5171–5187. [Google Scholar]
- Lopes, M.D.; da Silva, G.B.L. An efficient simulation-optimization approach based on genetic algorithms and hydrologic modeling to assist in identifying optimal low impact development designs. Landsc. Urban Plan. 2021, 216, 104251. [Google Scholar] [CrossRef]
- Lu, W.; Xia, W.; Shoemaker, C.A. Surrogate Global Optimization for Identifying Cost-Effective Green Infrastructure for Urban Flood Control With a Computationally Expensive Inundation Model. Water Resour. Res. 2022, 58, e2021WR030928. [Google Scholar] [CrossRef]
- Ortacay, H.H.Z. An improved scatter search algorithm for the uncapacitated facility location problem. Comput. Ind. Eng. 2019, 135, 855–867. [Google Scholar]
- Yao, D.; Qiongfang, L.; Pengfei, H.; Zhenhua, Z.; Zhengmo, Z.; Shuhong, X.; Xingye, H.; Tianshan, Z. Simultaneous Optimization of SWMM Parameters by the Dynamic System Response Curve with Multi-Objective Function. Water Resour. Manag. 2023, 37, 5061–5079. [Google Scholar]
- Bakhshipour, A.E. Bayes Opt SWMM AGaussianprocess-basedBayesianoptimizationtool. Environ. Model. Softw. 2024, 179, 106–122. [Google Scholar] [CrossRef]
- Alhassane, B.; Zhang, H.; Alseny, B.; He, J.; Luo, Z. Study of the applicability of Sponge City concepts for flood mitigation based on LID (low impact development) measures: A case study in Conakry City, Republic of Guinea. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2023, 88, 901–921. [Google Scholar]
- de Oliveira Sousa, B.J.; Mattos, T.S.; Taffarelo, D.; Mendiondo, E.M.; Vasconcelos, J.G.; Oliveira, P.T.S. Low-Impact Development Scenarios in Terms of Construction Costs and Runoff Reduction. J. Hydrol. Eng. 2024, 29, 05023025. [Google Scholar] [CrossRef]
- Laguna, M. Tabu and Scatter SearchPrinciples and Practice. INFORMS TutORials Oper. Res. 2018, 130–157. [Google Scholar] [CrossRef]
- Ross, S.M.; Weiss, G.; Zhang, Z. A Stochastic Assignment Problem with Unknown Eligibility Probabilities. Oper. Res. 2020, 69, 266–272. [Google Scholar] [CrossRef]
- Tyler, D.; Mostafa, R.; Sybil, S.; Mazdak, A. Development and Application of a SWMM-Based Simulation Model for Municipal Scale Hydrologic Assessments. Water 2021, 13, 1644. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Liu, Z.; Liu, D.; Huang, Q.; Xia, J. Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City. Sustainability 2023, 15, 3804. [Google Scholar] [CrossRef]
- Jeung, M.; Jang, J.; Yoon, K.; Baek, S.-S. Data assimilation for urban stormwater and water quality simulations using deep reinforcement learning. J. Hydrol. 2023, 624, 001–014. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Guo, C.; Jia, H.; Shen, Z. Two-scale optimal management of urban runoff by linking LIDs and landscape configuration. J. Hydrol. 2023, 620, 129332. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, X.; Zeng, Z.; Shen, P.; Lai, C. A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. J. Environ. Manag. 2022, 307, 114574. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, J.; Huang, Q.; Xia, J.; Li, J.; Liu, D.; Tan, Q. Performance assessment of sponge city infrastructure on stormwater outflows using isochrone and SWMM models. J. Hydrol. 2021, 597, 126151. [Google Scholar] [CrossRef]
- Barah, M.; Khojandi, A.; Li, X.; Hathaway, J.; Omitaomu, O. Optimizing green infrastructure placement under precipitation uncertainty. Omega 2020, 100, 102196. [Google Scholar] [CrossRef]
- Qin, H.-p.; Li, Z.-x.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef]
- Bergman, M.; Hedegaard, M.R.; Petersen, M.F.; Binning, P.; Mark, O.; Mikkelsen, P.S. Evaluation of two stormwater infiltration trenches in central Copenhagen after 15 years of operation. Water Sci. Technol. 2011, 63, 2279–2286. [Google Scholar] [CrossRef]
- Kumar, K.; Kozak, J.; Hundal, L.; Cox, A.; Zhang, H.; Granato, T. In-situ infiltration performance of different permeable pavements in a employee used parking lot—A four-year study. J. Environ. Manag. 2016, 167, 8–14. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Li, D.; Jia, S.; Lv, A.; Zhu, W. Regional Differences in Cost-Effectiveness of LID (Low Impact Development) Technology Facilities in Chinese Cities. J. Adv. Geogr. Sci. 2017, 36, 1402–1412. [Google Scholar]
- Gogate, N.G.; Kalbar, P.P.; Raval, P.M. Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making. J. Clean. Prod. 2017, 142, 2046–2059. [Google Scholar] [CrossRef]
- Ying, T. Research on BMP Planning for Optimal Management of Urban Rainfall Runoff Supported by SUSTAIN. Master’s Thesis, Tsinghua University, Beijing, China, 2010. [Google Scholar]
- Alfredo, K.; Montalto, F.; Goldstein, A. Observed and Modeled Performances of Prototype Green Roof Test Plots Subjected to Simulated Low- and High-Intensity Precipitations in a Laboratory Experiment. J. Hydrol. Eng. 2010, 15, 444–457. [Google Scholar] [CrossRef]
- Guo, C.; Li, J.; Li, H.; Liang, Z. Soil Nitrogen Speciation and the Relationship with Microbial Biomass Carbon in Bioretention Tanks. Water Air Soil Pollut. 2016, 227, 474. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, Y. SWMM-based evaluation of the effect of rain gardens on urbanized areas. Environ. Earth Sci. 2016, 75, 17. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Deletic, A.; Fletcher, T.D. Performance of grass filters used for stormwater treatment—A field and modelling study. J. Hydrol. 2005, 317, 261–275. [Google Scholar] [CrossRef]
- Liu, Y.; Cibin, R.; Bralts, V.F.; Chaubey, I.; Bowling, L.C.; Engel, B.A. Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environ. Model. Softw. 2016, 80, 281–296. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Scott, D.; Liao, H. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Hossain, S.; Hewa, G.A.; Wella-Hewage, S. A Comparison of Continuous and Event-Based Rainfall–Runoff (RR) Modelling Using EPA-SWMM. Water 2019, 11, 611. [Google Scholar] [CrossRef]
- David, R.; Legate, G.J.M.J. Evaluating the use of `goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Hiwa, S.; Nishioka, M.; Hiroyasu, T.; Miki, M. Novel search scheme for multi-objective evolutionary algorithms to obtain well-approximated and widely spread Pareto solutions. Swarm Evol. Comput. 2015, 22, 30–46. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Bakker, C.; Parks, G.T. Pareto front spacing with differential geometry in multidisciplinary systems. Struct. Multidiscip. Optim. 2015, 52, 973–989. [Google Scholar] [CrossRef]
- Debiao, L.; Jing, W.; Rui, Q.; Raymond, C. A hybrid differential evolution algorithm for parallel machine scheduling of lace dyeing considering colour families, sequence-dependent setup and machine eligibility. Int. J. Prod. Res. 2020, 59, 2722–2738. [Google Scholar]
- Gulshad, K.; Szydłowski, M.; Yaseen, A.; Aslam, R.W. A comparative analysis of methods and tools for low impact development (LID) site selection. J. Environ. Manag. 2024, 354, 120212. [Google Scholar] [CrossRef]
Underlying Surface | Flow Generation Model | Runoff Coefficient | Initial Penetration Rate (mm/h) | Stable Permeability (mm/h) | Attenuation Rate (mm/h) | Confluence Model | Confluence Parameter |
---|---|---|---|---|---|---|---|
roofing | Fixed | 0.98 | - | - | - | SWMM | 0.012 |
pavement | Fixed | - | - | - | - | SWMM | 0.01 |
greenbelt | Horton | - | 79.38 | 12.7 | 4.34 | SWMM | 0.2 |
massif | Horton | - | 79.38 | 13.42 | 4.34 | SWMM | 0.3 |
Performance Evaluation Index | Objective Function Classification | |
---|---|---|
NSE | PBIAS | |
Excellent | (0.75, 1.00] | (0, 0.1] |
Good | (0.65, 0.75] | (0.1, 0.15] |
average | (0.50, 0.65] | (0.15, 0.25] |
range | (0, 0.50] | >0.25 |
LID Facility Placement Type | Genetic Code |
---|---|
No LID facility set (0) | 000 |
Bioretention tank (1) | 001 |
Green Roof (2) | 010 |
Porous pavement (3) | 011 |
Rain barrel (4) | 100 |
Rain Garden (5) | 101 |
Seepage ditch (6) | 110 |
Grass planting ditch (7) | 111 |
Parameters to Be Determined | Parameter Variation Range | |
---|---|---|
Minimum Value | Maximum Value | |
Feature width/m | 10 | 50 |
Characteristic slope/% | 0.05 | 0.1 |
Manning coefficient of water penetration | 0.11 | 0.15 |
Percentage of impervious water without storage/% | 25 | 50 |
Evaluation Index | 13 mm | 33.2 mm | 50.6 mm | 66.3 mm | 153 mm |
---|---|---|---|---|---|
NSE | 0.8855 | 0.8876 | 0.8706 | 0.8504 | 0.8744 |
PBIAS | 0.06428 | 0.06928 | 0.0908 | 0.0591 | 0.0456 |
Rainfall | D2 | MS | HV | |||
---|---|---|---|---|---|---|
Multi-Target Decentralized Search | NSGA II | Multi-Target Decentralized Search | NSGA II | Multi-Target Decentralized Search | NSGA II | |
13 mm | 1.4458 | 1.3995 | 0.0415 | 0.0984 | 91.3421 | 93.3186 |
33.2 mm | 1.4428 | 1.4820 | 0.0256 | 0.1184 | 56.5876 | 48.9282 |
50.6 mm | 1.5006 | 1.4982 | 0.0099 | 0.0299 | 127.1488 | 72.4342 |
66.3 mm | 1.4643 | 1.4621 | 0.0010 | 0.0592 | 169.3381 | 125.1995 |
153.7 mm | 1.5080 | 1.4821 | 0.0177 | 0.0121 | 56.1358 | 61.9430 |
Mean value | 1.4723 | 1.46544 | 0.01914 | 0.0636 | 100.11048 | 80.3647 |
Optimal number | 4 | 1 | 4 | 1 | 3 | 2 |
Rainfall | D2 | MS | HV | |||
---|---|---|---|---|---|---|
Multi-Target Decentralized Search | NSGA II | Multi-Target Decentralized Search | NSGA II | Multi-Target Decentralized Search | NSGA II | |
13 mm | 1.5066 | 1.4722 | 0.0082 | 0.0669 | 161.3868 | 55.4978 |
33.2 mm | 1.5104 | 1.4707 | 0.0132 | 0.0148 | 200.9086 | 52.7769 |
50.6 mm | 1.4952 | 1.4799 | 0.0479 | 0.0804 | 414.0026 | 280.0833 |
66.3 mm | 1.5568 | 1.4552 | 0.1446 | 0.1523 | 381.4610 | 91.6152 |
153.7 mm | 1.5169 | 1.4716 | 0.0568 | 0.0584 | 231.7102 | 52.9767 |
Mean value | 1.51718 | 1.46992 | 0.05414 | 0.07456 | 277.89384 | 106.58998 |
Optimal number | 5 | 0 | 5 | 0 | 5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, D.; Li, Q.; Xu, K.-Q.; Xie, J.; Qiang, W.; Zheng, D.; Chen, S.; Fan, G. Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm. Water 2025, 17, 840. https://doi.org/10.3390/w17060840
Huang Y, Li D, Li Q, Xu K-Q, Xie J, Qiang W, Zheng D, Chen S, Fan G. Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm. Water. 2025; 17(6):840. https://doi.org/10.3390/w17060840
Chicago/Turabian StyleHuang, Yuzhou, Debiao Li, Qiusha Li, Kai-Qin Xu, Jiankun Xie, Wei Qiang, Dangshi Zheng, Shengzheng Chen, and Gongduan Fan. 2025. "Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm" Water 17, no. 6: 840. https://doi.org/10.3390/w17060840
APA StyleHuang, Y., Li, D., Li, Q., Xu, K.-Q., Xie, J., Qiang, W., Zheng, D., Chen, S., & Fan, G. (2025). Optimization of Low Impact Development Layouts for Urban Stormwater Management: A Simulation-Based Approach Using Multi-Objective Scatter Search Algorithm. Water, 17(6), 840. https://doi.org/10.3390/w17060840