Insights into Wastewater Nitrogen Conversion to Protein via Photosynthetic Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Operation
2.3. Analytical Methods
2.4. Molecular Analysis
3. Results and Discussion
3.1. The Effect of Nitrogen Source Concentration on Protein Production
3.2. The Effect of Nitrogen Source Type on Protein Production
3.2.1. Single Source of Nitrogen
3.2.2. Combined Nitrogen Sources
3.3. Nitrogen Balance of PSB Protein Production
3.4. Nitrogen Metabolism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.Z.; Logan, A.; Terry, S.; Spear, J.R. Microbial response to single-cell protein production and brewery wastewater treatment. Microb. Biotechnol. 2015, 8, 65–76. [Google Scholar] [CrossRef]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Ghasemi, Y. Single Cell Protein: Production and Process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Pfennig, N. Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J. Bacteriol. 1969, 99, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Shipman, R.; Kao, I.; Fan, L. Single-cell protein production by photosynthetic bacteria cultivation in agricultural by-products. Biotechnol. Bioeng. 1975, 17, 1561–1570. [Google Scholar] [CrossRef]
- Meng, F.; Yang, A.; Wang, H.; Zhang, G.; Li, X.; Zhang, Y.; Zou, Z. One-step treatment and resource recovery of high-concentration non-toxic organic wastewater by photosynthetic bacteria. Bioresour. Technol. 2018, 251, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Hülsen, T.; Hsieh, K.; Lu, Y.; Tait, S.; Batstone, D.J. Simultaneous treatment and single cell protein production from agri-industrial wastewaters using purple phototrophic bacteria or microalgae—A comparison. Bioresour. Technol. 2018, 254, 214–223. [Google Scholar] [CrossRef]
- Hülsen, T.; Sander, E.M.; Jensen, P.D.; Batstone, D.J. Application of purple phototrophic bacteria in a biofilm photobioreactor for single cell protein production: Biofilm vs suspended growth. Water Res. 2020, 181, 115909. [Google Scholar] [CrossRef]
- Chitapornpan, S.; Chiemchaisri, C.; Chiemchaisri, W.; Honda, R.; Yamamoto, K. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater. Bioresour. Technol. 2013, 141, 65–74. [Google Scholar] [CrossRef]
- Hülsen, T.; Barry, E.M.; Lu, Y.; Puyol, D.; Batstone, D.J. Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community. Water Res. 2016, 100, 537–545. [Google Scholar] [CrossRef]
- Hou, P.; Liu, S.; Hu, D.; Zhang, J.; Liang, J.; Liu, H.; Zhang, J.; Zhang, G. Predicting Photosynthetic Bacteria-Derived Protein Synthesis from Wastewater Using Machine Learning and Causal Inference. Bioresour. Technol. 2024, 414, 131638. [Google Scholar] [CrossRef]
- Zhi, R.; Yang, A.; Zhang, G.; Zhu, Y.; Meng, F.; Li, X. Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresour. Technol. 2019, 274, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.-S.; Chien, Y.-H.; Chen, C.-J. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol 2012, 113, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Keppen, O.I.; Krasil’nikova, E.N.; Lebedeva, N.V.; Ivanovskiĭ, R.N. Comparative study of metabolism of the purple photosynthetic bacteria grown in the light and in the dark under anaerobic and aerobic conditions. Mikrobiologiia 2013, 82, 534–541. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bak, U.G.; Nielsen, C.W.; Marinho, G.S.; Gregersen, Ó.; Jónsdóttir, R.; Holdt, S.L. The seasonal variation in nitrogen, amino acid, protein and nitrogen-to-protein conversion factors of commercially cultivated Faroese Saccharina latissima. Algal Res. 2019, 42, 101576. [Google Scholar] [CrossRef]
- Frølund, B.; Palmgren, R.; Keiding, K.; Nielsen, P.H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996, 30, 1749–1758. [Google Scholar] [CrossRef]
- Atasoglu, C.; Wallace, R.J. Influence of ammonia concentration on N-15-ammonia incorporation and de novo amino acid synthesis by the non-cellulolytic ruminal bacteria, Prevotella bryantii B(1)4, Selenomonas ruminantium HD4 and Streptococcus bovis ES1. Turk. J. Vet. Anim. Sci. 2002, 26, 389–395. [Google Scholar]
- Korosh, T.C.; Dutcher, A.; Pfleger, B.F.; McMahon, K.D. Inhibition of Cyanobacterial Growth on a Municipal Wastewater Sidestream Is Impacted by Temperature. mSphere 2018, 3, 00538-17. [Google Scholar] [CrossRef]
- Kodera, T.; Akizuki, S.; Toda, T. Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochem. 2017, 58, 252–257. [Google Scholar] [CrossRef]
- Hou, P.; Liu, S.; Hu, D.; Zhang, J.; Liang, J.; Liu, H.; Zhang, J.; Zhang, G. Predicting Biomass Conversion and COD Removal in Wastewater Treatment by Phototrophic Bacteria with Interpretable Machine Learning. J. Env. Manag. 2025, 375, 124282. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, M.; Wang, Y.; Fu, L.; Li, W.; Deng, B.; Liang, Q.; Shen, W. Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World J. Microbiol. Biotechnol. 2014, 30, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Antia, N.J. Nickel Ion Requirements for Autotrophic Growth of Several Marine Microalgae with Urea Serving as Nitrogen Source. Can. J. Fish. Aquat. Sci. 2011, 43, 2427–2433. [Google Scholar] [CrossRef]
- Sánchez-Luna, L.D.; Converti, A.; Tonini, G.C.; Sato, S.; de Carvalho, J.C. Continuous and pulse feedings of urea as a nitrogen source in fed-batch cultivation of Spirulina platensis. Aquac. Eng. 2004, 31, 237–245. [Google Scholar] [CrossRef]
- Wu, G.-X.; Guan, Y.-T.; Wang, J.-Q.; Jiang, Z.-P. Effect of carbon and nitrogen sources on the accumulation of poly-beta-hydroxybutyrate by purple non-sulfur photosynthetic bacteria. Huan Jing Ke Xue Huanjing Kexue 2004, 25, 102–107. [Google Scholar]
- Ormerod, J.G. The Phototrophic Bacteria: Anaerobic Life in the Light; Blackwell Science Ltd.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Wang, Y.; Zhou, X.; Zhang, Z.; Zhang, Q. Nitrogen Source Utilization of Photosynthetic Bacteria in Process of Hydrogen Production. Trans. Chin. Soc. Agric. Mach. 2014, 45, 194–199. [Google Scholar]
- Lu, H.; Wang, X.; Hu, S.; Han, T.; He, S.; Zhang, G.; He, M.; Lin, X. Bioeffect of static magnetic field on photosynthetic bacteria: Evaluation of bioresources production and wastewater treatment efficiency. Water Environ. Res. 2020, 92, 1131–1141. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Y.; Song, X.; Wang, Y.; Sheng, L.; Wang, H.; Zhang, Y. Rhodopseudomonas sphaeroides treating mesosulfuron-methyl waste-water. Environ. Pollut. 2020, 262, 114166. [Google Scholar] [CrossRef]
- Tosques, I.E.; Kwiatkowski, A.V.; Shi, J.; Shapleigh, J.P. Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J. Bacteriol. 1997, 179, 1090–1095. [Google Scholar] [CrossRef]
- Sabaty, M.; Schwintner, C.; Cahors, S.; Richaud, P.; Verméglio, A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J. Bacteriol. 1999, 181, 6028–6032. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Zhang, Q.; Dai, S. Effect of nitrite on growth and microcystins production of Microcystis aeruginosa PCC7806. J. Appl. Phycol. 2011, 23, 665–671. [Google Scholar] [CrossRef]
- Shapleigh, J.P. Dissimilatory and Assimilatory Nitrate Reduction in the Purple Photosynthetic Bacteria. In The Purple Phototrophic Bacteria; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 623–642. [Google Scholar]
- Xu, Z.; Zhou, G. Research advance in nitrogen metabolism of plant and its environmental regulation. Chin. J. Appl. Ecol. 2004, 15, 511. [Google Scholar]
- Han, Y.R.; Wang, X.F.; Yang, F.J.; Min, W.; Cui, X.M. Effects of NO3− stress on photosynthetic characteristics and nitrogen metabolism of strawber- ry seedlings. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2015, 26, 2314–2320. [Google Scholar]
- Zhang, X.-Y.; Peng, D.-C.; Wan, Q.; Ju, K.; Wang, B.-B.; Pei, L.-Y.; Hou, Y.-P. Changing the Nutrient Source from Ammonia to Nitrate: Effects on Heterotrophic Bacterial Growth in Wastewater. Pol. J. Environ. Stud. 2020, 29, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Yang, Y.; Sun, W.; Wang, Z.; Xie, S. Simazine biodegradation and community structures of ammonia-oxidizing microorganisms in bioaugmented soil: Impact of ammonia and nitrate nitrogen sources. Env. Sci. Pollut. Res. 2014, 21, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Broda, E. The history of inorganic nitrogen in the biosphere. J. Mol. Evol. 1975, 7, 87. [Google Scholar] [CrossRef]
- Wang, S.; Lin, G.; Huang, X.; Yang, S.; Qu, D. Effect of Organic-Inorganic Compound Fertilizer on Diversity of Bacteria in Mulberry Rhizosphere Soil and Endophytic Bacteria in Root. Acta Sericologica Sin. 2019, 45, 494–500. [Google Scholar]
- Ma, J.; Mao, W.; Jiang, L.; Ye, J.; Wang, J.; Fu, J. Effects of nitrogen forms in organic-inorganic compound fertilizers on their physical-chemical properties and fertilizer efficiency. Acta Agric. Zhejiangensis 2005, 17, 303–306. [Google Scholar]
- Henze, M.; van Loosdrecht, M.; Ekama, G.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modeling and Design; IWA Publishing: London, UK, 2008. [Google Scholar]
- Borghese, R.; Zannoni, D. Respiration in Phototrophic Microorganisms. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 79–82. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef]
- Mohan, S.B.; Cole, J.A. Chapter 7—The Dissimilatory Reduction of Nitrate to Ammonia by Anaerobic Bacteria. In Biology of the Nitrogen Cycle; Bothe, H., Ferguson, S.J., Newton, W.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 93–106. [Google Scholar]
- Mikes, V.; Chvalova, H.; Matlova, L. Assimilation of ammonia in Paracoccus denitrificans. Folia Microbiol. 1991, 36, 35–41. [Google Scholar] [CrossRef]
- Wang, P.; Tan, Z. Ammonia Assimilation in Rumen Bacteria: A Review. Anim. Biotechnol. 2013, 24, 107–128. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Z.; Zhang, L.; Wang, L.; Zhou, Y. Metagenomic Assembled Genomes Unravel Purple Non Sulfur Bacteria (PNSB) Involved in Integrating C, N, P Biotransformation. Sci. Total Environ. 2022, 830, 154591. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lu, W.; Yu, Y.; Qiu, H.; Zeng, Y.; Wang, L.; Liu, Y.; Yan, L.; Fu, Y.V.; Zheng, Y. The Ammonium Transporter AmtB Is Dispensable for the Uptake of Ammonium in the Phototrophic Diazotroph Rhodopseudomonas palustris. Environ. Technol. Innov. 2024, 36, 103853. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, L.; Gao, Y.; Cui, L.; Wang, M.; Huang, L.; Jiang, M.; Liu, Y.; Zhu, Y.; Xiang, H.; et al. Formation of NifA-PII Complex Represses Ammonium-Sensitive Nitrogen Fixation in Diazotrophic Proteobacteria Lacking NifL. Cell Rep. 2024, 43, 114476. [Google Scholar] [CrossRef] [PubMed]
Gene Name | SPL | REF | Enzyme Name | SPL | REF |
---|---|---|---|---|---|
nrtA | 13 | 13 | Carbonic anhydrase | 393 | 393 |
nrtB | 3 | 3 | Formamidase | 42 | 42 |
nrtC | 14 | 14 | Nitrilase | 25 | 25 |
nasS | 46 | 46 | |||
ncd2 | 677 | 677 | |||
npdA | 580 | 580 | |||
nirK | 4607 | 4607 | |||
norB | 1479 | 1479 | |||
nosZ | 4877 | 4877 | |||
nifD | 25 | 25 | |||
nirA | 15 | 15 | |||
cynS | 22 | 22 | |||
glnA | 1744 | 1744 | |||
gltB | 12,158 | 12,158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Wu, C.; Zheng, S.; Zhang, G. Insights into Wastewater Nitrogen Conversion to Protein via Photosynthetic Bacteria. Water 2025, 17, 826. https://doi.org/10.3390/w17060826
Zhao W, Wu C, Zheng S, Zhang G. Insights into Wastewater Nitrogen Conversion to Protein via Photosynthetic Bacteria. Water. 2025; 17(6):826. https://doi.org/10.3390/w17060826
Chicago/Turabian StyleZhao, Wei, Chenghao Wu, Sijia Zheng, and Guangming Zhang. 2025. "Insights into Wastewater Nitrogen Conversion to Protein via Photosynthetic Bacteria" Water 17, no. 6: 826. https://doi.org/10.3390/w17060826
APA StyleZhao, W., Wu, C., Zheng, S., & Zhang, G. (2025). Insights into Wastewater Nitrogen Conversion to Protein via Photosynthetic Bacteria. Water, 17(6), 826. https://doi.org/10.3390/w17060826