A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Soil Moisture Data
2.2.2. Auxiliary Data
2.2.3. Data Preprocessing
3. Methods
3.1. SM Reconstruction Approach
- The TCH method was firstly used to analyze uncertainties of multiple SM products on different land cover types at a spatial resolution of 0.25°. The products with low uncertainties were then combined to produce a merged SM product using the BTCH merging method.
- All auxiliary variables including real albedo, precipitation, EVI, LST, soil texture (sand, clay, and silt), and terrain (elevation, slope, and aspect) were resampled to 0.25° spatial resolution, the same as the merged SM product.
- RF and LSTM models were constructed between the merged SM and auxiliary variables at a coarse spatial resolution (0.25°), and the corresponding downscaled SM was generated by inputting auxiliary variables at a high spatial resolution (0.05°). To explore if antecedent precipitation can improve the downscaling results, we trained the RF and LSTM models under two conditions each: with and without the antecedent precipitation, for comparison.
- The performances of each downscaled SM and the original (merged) SM product were evaluated using in situ observation and the CLDAS SM data, and they were inter-compared.
3.2. Bayesian Three-Cornered Hat (BTCH) Merging
3.3. Machine/Deep Learning Algorithms
3.4. Evaluation Method
4. Results
4.1. TCH Uncertainty Assessment
4.2. BTCH Merging
4.3. Spatial Downscaling of the Merged SM
4.3.1. Selection of Antecedent Precipitation Days
4.3.2. The Performance of Downscaling Models on the Test Dataset
4.3.3. Spatial Distribution of the Downscaled SM
4.4. Validations of the Downscaled SM
4.4.1. Comparison with Ground Observations
4.4.2. Comparison with CLDAS SM Data
4.5. Feature Importance Assessment
5. Discussion
5.1. Advantages and Limitations in the BTCH Method
5.2. Importance of Antecedent Precipitation
5.3. Uncertainty in the Validation of Downscaled SM
5.4. Limitations and Future Directions of Machine/Deep Learning Model
6. Conclusions
- (1)
- During 2015–2020, the TCH-based uncertainty ranking of seven SM products on four main land cover types in the PRB was consistent: (GLDAS and GLEAM) < ERA5-Land < SMAP < CCI-active < FY-3C < AMSR2. Moreover, the BTCH-based SM estimate outperformed five parent products and the AVE-based SM estimate, indicating that BTCH is a fusion approach that can effectively reduce data uncertainties and optimize weights.
- (2)
- The optimal time scale for the cumulative effect of precipitation on SM is 35 days for the period from 2015 to 2020 in the PRB. Validation on the 20% test dataset, visual comparison on spatial distributions, and validation against in situ observations and the CLDAS SM data all showed that adding an antecedent precipitation variable as a predictor can greatly improve the performance of SM downscaling models, both at the 0.25° and 0.05° spatial scales. The feature importance assessment also revealed that precipitation is a key variable to our SM downscaling models, with a greater influence of antecedent precipitation (30.01%) than contemporary precipitation (15.76%). Moreover, the LSTMpre35 model performed slightly better than the RFpre35 model.
- (3)
- Validation against in situ observations and the CLDAS SM data also indicated that the downscaled SM results were mainly limited by the original SM data in terms of data accuracy and were difficult to surpass. However, they did alleviate the overestimation inherent in the original SM data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 2010, 14, 1881–1893. [Google Scholar] [CrossRef]
- Sehgal, V.; Gaur, N.; Mohanty, B.P. Global Flash Drought Monitoring Using Surface Soil Moisture. Water Resour. Res. 2021, 57, e2021WR029901. [Google Scholar] [CrossRef]
- Borodychev, V.V.; Lytov, M.N. Irrigation management model based on soil moisture distribution profile. IOP Conf. Ser. Earth Environ. Sci. 2020, 577, 012022. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Chen, L.; Xu, S.; Sun, H. A machine learning-based approach for generating high-resolution soil moisture from SMAP products. Geocarto Int. 2022, 37, 16086–16107. [Google Scholar] [CrossRef]
- Shangguan, Y.L.; Min, X.X.; Shi, Z. Inter-comparison and integration of different soil moisture downscaling methods over the Qinghai-Tibet Plateau. J. Hydrol. 2023, 617, 129014. [Google Scholar] [CrossRef]
- Ming, W.; Ji, X.; Zhang, M.; Li, Y.; Liu, C.; Wang, Y.; Li, J. A Hybrid Triple Collocation-Deep Learning Approach for Improving Soil Moisture Estimation from Satellite and Model-Based Data. Remote Sens. 2022, 14, 1744. [Google Scholar] [CrossRef]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 2011, 47, W05301. [Google Scholar] [CrossRef]
- Min, X.; Shangguan, Y.; Li, D.; Shi, Z. Improving the fusion of global soil moisture datasets from SMAP, SMOS, ASCAT, and MERRA2 by considering the non-zero error covariance. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103016. [Google Scholar] [CrossRef]
- Xie, Q.X.; Jia, L.; Menenti, M.; Hu, G.C. Global soil moisture data fusion by Triple Collocation Analysis from 2011 to 2018. Sci. Data 2022, 9, 687. [Google Scholar] [CrossRef]
- Kim, S.; Pham, H.T.; Liu, Y.Y.; Marshall, L.; Sharma, A. Improving the Combination of Satellite Soil Moisture Data Sets by Considering Error Cross Correlation: A Comparison Between Triple Collocation (TC) and Extended Double Instrumental Variable (EIVD) Alternatives. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7285–7295. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Premoli, A.; Tavella, P. A revisited three-cornered hat method for estimating frequency standard instability. IEEE Trans. Instrum. Meas. 1993, 42, 7–13. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.C.; Moradkhani, H.; Zhang, X.; Hu, C.L. Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets. Water Resour. Res. 2020, 56, e2019WR026444. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ye, A.Z. Improving global gross primary productivity estimation by fusing multi-source data products. Heliyon 2022, 8, e09153. [Google Scholar] [CrossRef]
- He, X.; Xu, T.; Xia, Y.; Bateni, S.M.; Guo, Z.; Liu, S.; Mao, K.; Zhang, Y.; Feng, H.; Zhao, J. A Bayesian Three-Cornered Hat (BTCH) Method: Improving the Terrestrial Evapotranspiration Estimation. Remote Sens. 2020, 12, 878. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.N.; Dong, J.Z.; Zheng, D.H.; Wigneron, J.P.; Liu, S.M.; Zhou, J.; Xu, T.R.; Yang, S.Q.; Song, Y.Z.; et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sens. Environ. 2021, 255, 112225. [Google Scholar] [CrossRef]
- Kim, H.; Wigneron, J.-P.; Kumar, S.; Dong, J.; Wagner, W.; Cosh, M.H.; Bosch, D.D.; Collins, C.H.; Starks, P.J.; Seyfried, M.; et al. Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sens. Environ. 2020, 251, 112052. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Merlin, O.; Rudiger, C.; Al Bitar, A.; Richaume, P.; Walker, J.P.; Kerr, Y.H. Disaggregation of SMOS Soil Moisture in Southeastern Australia. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1556–1571. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Mao, T.N.; Shangguan, W.; Li, Q.L.; Li, L.; Zhang, Y.; Huang, F.N.; Li, J.D.; Liu, W.; Zhang, R.Q. A Spatial Downscaling Method for Remote Sensing Soil Moisture Based on Random Forest Considering Soil Moisture Memory and Mass Conservation. Remote Sens. 2022, 14, 3858. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Z.; Long, Z.; Qin, Q. Downscaling SMAP Soil Moisture Products With Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4051–4062. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, W.; Wang, Q.; Xia, X. Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Adv. Water Resour. 2020, 141, 103601. [Google Scholar] [CrossRef]
- Song, C.Y.; Jia, L.; Menenti, M. Retrieving High-Resolution Surface Soil Moisture by Downscaling AMSR-E Brightness Temperature Using MODIS LST and NDVI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 935–942. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, Y.; Zhang, W.; Peng, J.; Meng, L. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote Sens. Environ. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Yan, R.; Bai, J. A New Approach for Soil Moisture Downscaling in the Presence of Seasonal Difference. Remote Sens. 2020, 12, 2818. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, F.; Yang, H.; Jiang, Y. Discussion on Using Antecedent Precipitation Index to Supplement Relative Soil Moisture Data Series. Procedia Environ. Sci. 2011, 10, 1489–1495. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z.; Liang, Y.; Wan, S.; Tan, Y. Method for Soil Moisture Calculation in Plough Layer Based on Antecedent Effective Rainfall. Chin. J. Agrometeorol. 2009, 30, 365–369. (In Chinese) [Google Scholar]
- Zhang, T.; Chen, Y. Analysis of Dynamic Spatiotemporal Changes in Actual Evapotranspiration and Its Associated Factors in the Pearl River Basin Based on MOD16. Water 2017, 9, 832. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; Wanders, N.; Dorigo, W.A.; de Jeu, R.A.M. A Preliminary Study toward Consistent Soil Moisture from AMSR2. J. Hydrometeorol. 2015, 16, 932–947. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Li, X.; Pearson, S.; Wu, D.L.; Sun, R.J.; Johnson, S.; Wheeler, J.; Fang, S.B. Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water 2019, 11, 248. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; Neill, P.E.O.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Ma, H.L.; Zeng, J.Y.; Chen, N.C.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Munoz-Sabater, J.; Dutra, E.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernandez-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Shi, C.X.; Xie, Z.H.; Qian, H.; Liang, M.L.; Yang, X.C. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef]
- Zhao, T.; Yu, P. Global Daily 0.05° Spatiotemporal Continuous Land Surface Temperature Dataset (2002–2022); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Govaerts, Y.; Dickinson, R.E.; Widlowski, J.-L.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Martonchik, J.V.; Lattanzio, A.; Pinty, B. Coupling Diffuse Sky Radiation and Surface Albedo. J. Atmos. Sci. 2005, 62, 2580–2591. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; Velthuizen, H.v.; Verelst, L.; Wiberg, D.; Batjes, N.H.; Dijkshoorn, J.A.; Engelen, V.W.P.v.; Fischer, G.; Jones, A.; Montanarella, L.; et al. Harmonized World Soil Database; Version 1.2; Joint Research Centre of the EC: Laxenburg, Austria, 2012. [Google Scholar]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Galindo, F.J.; Palacio, J. Estimating the instabilities of N correlated clocks. In Proceedings of the 31th Annual Precise Time and Time Interval Systems and Applications Meeting, Dana Point, CA, USA, 7–9 December 1999; pp. 285–296. [Google Scholar]
- Abbaszadeh, P.; Moradkhani, H.; Zhan, X. Downscaling SMAP Radiometer Soil Moisture Over the CONUS Using an Ensemble Learning Method. Water Resour. Res. 2019, 55, 324–344. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Zheng, J.Y.; Zhao, T.J.; Lu, H.S.; Shi, J.C.; Cosh, M.H.; Ji, D.B.; Jiang, L.M.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [Google Scholar] [CrossRef]
- Fan, Y.; Qiu, J.; Dong, J.; Zhang, X.H.; Dagang, W. Error Characteristics of Microwave Soil Moisture Products based on Triple Collocation and Its Spatial-temporal Pattern. Remote Sens. Technol. Appl. 2020, 35, 85–96. (In Chinese) [Google Scholar]
- Fan, X.W.; Liu, Y.B.; Gan, G.J.; Wu, G.P. SMAP underestimates soil moisture in vegetation-disturbed areas primarily as a result of biased surface temperature data. Remote Sens. Environ. 2020, 247, 111914. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.C.; Zhang, X.; Moradkhani, H.; Zhang, C.; Hu, C.L. In-situ and triple-collocation based evaluations of eight global root zone soil moisture products. Remote Sens. Environ. 2021, 254, 112248. [Google Scholar] [CrossRef]
- Peng, J.; Tanguy, M.; Robinson, E.L.; Pinnington, E.; Evans, J.; Ellis, R.; Cooper, E.; Hannaford, J.; Blyth, E.; Dadson, S. Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain. Remote Sens. Environ. 2021, 264, 112610. [Google Scholar] [CrossRef]
- Yuan, S.; He, X.; Gu, X.; Pan, T.; Yu, F. Response of Declining Soil Moisture on Meteorological Factors over Karst Area of Guizhou Province. Chin. J. Soil Sci. 2018, 49, 320–328. (In Chinese) [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. For. Meteorol. 2017, 237–238, 257–269. [Google Scholar] [CrossRef]
- Zhou, J.H.; Crow, W.T.; Wu, Z.Y.; Dong, J.Z.; He, H.; Feng, H.H. A triple collocation-based 2D soil moisture merging methodology considering spatial and temporal non-stationary errors. Remote Sens. Environ. 2021, 263, 112509. [Google Scholar] [CrossRef]
- Wu, K.; Ryu, D.; Nie, L.; Shu, H. Time-variant error characterization of SMAP and ASCAT soil moisture using Triple Collocation Analysis. Remote Sens. Environ. 2021, 256, 112324. [Google Scholar] [CrossRef]
- Shangguan, Y.; Min, X.; Wang, N.; Tong, C.; Shi, Z. A long-term, high-accuracy and seamless 1km soil moisture dataset over the Qinghai-Tibet Plateau during 2001–2020 based on a two-step downscaling method. GIScience Remote Sens. 2024, 61, 2290337. [Google Scholar] [CrossRef]
- Schoener, G.; Stone, M.C. Monitoring soil moisture at the catchment scale—A novel approach combining antecedent precipitation index and radar-derived rainfall data. J. Hydrol. 2020, 589, 125155. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Dai, H.; Mao, J.; Zhuo, L.; Rong, G. Estimation of soil moisture using modified antecedent precipitation index with application in landslide predictions. Landslides 2019, 16, 2381–2393. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, S.; Xiang, D.; Zhang, X.; Li, D.; Li, L.; Zhang, T. Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method. Remote Sens. 2019, 11, 284. [Google Scholar] [CrossRef]
- Kim, J.; Mohanty, B.P.; Shin, Y. Effective soil moisture estimate and its uncertainty using multimodel simulation based on Bayesian Model Averaging. J. Geophys. Res.-Atmos. 2015, 120, 8023–8042. [Google Scholar] [CrossRef]
- Reichle, R.H.; Crow, W.T.; Keppenne, C.L. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res. 2008, 44, W03423. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, C.; Sun, S.; Liang, X. Fusion of In-Situ Soil Moisture and Land Surface Model Estimates Using Localized Ensemble Optimum Interpolation over China. J. Meteorol. Res. 2020, 34, 1335–1346. [Google Scholar] [CrossRef]
- Wang, J.; Ge, Y.; Song, Y.; Li, X. A Geostatistical Approach to Upscale Soil Moisture With Unequal Precision Observations. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2125–2129. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Q.; Hu, F.; Shao, J.; Wang, G. A climate-adaptive transfer learning framework for improving soil moisture estimation in the Qinghai-Tibet Plateau. J. Hydrol. 2024, 630, 130717. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K. PIML-SM: Physics-Informed Machine Learning to Estimate Surface Soil Moisture From Multisensor Satellite Images by Leveraging Swarm Intelligence. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Chavoshi, A.; Dashtian, H.; Bakhshian, S.; Young, M.H.; Niyogi, D. PINN-SM: A Physics-Informed Neural Networks Model for Vadose Zone Soil Moisture Profile Prediction. arXiv 2024. [Google Scholar] [CrossRef]
Datasets | Spatial Resolution | Temporal Resolution | Spatial Projection | Unit | Depth |
---|---|---|---|---|---|
CCI-active | 0.25° | Daily | GCS_WGS_1984 | % | 0~3 cm |
AMSR2 | 0.25° | Des: 01:30 Asc: 13:30 | GCS_WGS_1984 | m3/m3 | 0~2 cm |
FY-3C | 25 km | Des: 10:00 Asc: 22:00 | EASE-Grid | m3/m3 | 0~2 cm |
SMAP | 36 km | Des: 06:00 Asc: 18:00 | EASE-Grid 2.0 Global | m3/m3 | 0~5 cm |
ERA5-Land | 0.1° | Hourly | GCS_WGS_1984 | m3/m3 | 0~7 cm |
GLDAS | 0.25° | 3-h | GCS_WGS_1984 | m3/m3 | 0~10 cm |
GLEAM | 0.25° | Daily | GCS_WGS_1984 | m3/m3 | 0~10 cm |
CLDAS | 0.0625° | Hourly | GCS_WGS_1984 | m3/m3 | 0~5 cm |
In situ | Point scale | Hourly | -- | m3/m3 | 0~10 cm |
Datasets | Variables | Spatial Resolution | Temporal Resolution |
---|---|---|---|
GlobeLand30 | Land cover types | 30 m | Static |
CHIRPS v2.0 | Precipitation | 0.05° | Daily |
MOD11C1/MYD11C1 | LST | 0.05° | Four times a day |
MOD13C1 | EVI | 0.05° | 16-day |
MCD43C3 | Albedo | 0.05° | Daily |
SRTM | Elevation, slope, and aspect | 90 m | Static |
HWSD v1.2 | Soil texture | 1 km | Static |
Metric | Equation | Range | Best Value |
---|---|---|---|
R2 | [0, 1] | 1 | |
R | [0, 1] | 1 | |
RMSE | 0 | ||
ubRMSE | 0 | ||
MAE | 0 | ||
Bias | () | 0 |
56,697 | 56,785 | 56,788 | 56,875 | 56,880 | 56,881 | 56,883 | 56,889 | 56,985 | 59,205 | Ave | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Original (0.25°) | R | 0.828 | 0.882 | 0.639 | 0.492 | 0.681 | 0.537 | 0.840 | 0.744 | 0.669 | 0.802 | 0.711 |
Bias | 0.028 | 0.008 | 0.037 | −0.029 | 0.114 | 0.106 | −0.029 | 0.035 | 0.044 | 0.030 | 0.034 | |
RMSE | 0.064 | 0.033 | 0.076 | 0.060 | 0.122 | 0.118 | 0.042 | 0.079 | 0.059 | 0.036 | 0.069 | |
MAE | 0.048 | 0.026 | 0.058 | 0.049 | 0.114 | 0.107 | 0.034 | 0.062 | 0.049 | 0.031 | 0.058 | |
ubRMSE | 0.058 | 0.032 | 0.066 | 0.053 | 0.044 | 0.053 | 0.031 | 0.070 | 0.039 | 0.019 | 0.047 | |
N | 384 | 384 | 384 | 383 | 383 | 384 | 371 | 382 | 383 | 384 | ||
RFpre | R | 0.653 | 0.688 | 0.425 | 0.383 | 0.603 | 0.466 | 0.693 | 0.601 | 0.452 | 0.510 | 0.547 |
Bias | −0.006 | −0.006 | 0.014 | −0.054 | 0.115 | 0.092 | −0.041 | 0.026 | 0.048 | 0.053 | 0.024 | |
RMSE | 0.072 | 0.032 | 0.079 | 0.064 | 0.120 | 0.100 | 0.056 | 0.087 | 0.062 | 0.060 | 0.073 | |
MAE | 0.058 | 0.026 | 0.065 | 0.056 | 0.115 | 0.092 | 0.046 | 0.073 | 0.055 | 0.053 | 0.064 | |
ubRMSE | 0.072 | 0.031 | 0.077 | 0.033 | 0.035 | 0.038 | 0.038 | 0.084 | 0.039 | 0.026 | 0.047 | |
RF pre35 | R | 0.707 | 0.832 | 0.551 | 0.482 | 0.628 | 0.500 | 0.785 | 0.689 | 0.580 | 0.648 | 0.640 |
Bias | 0.001 | 0.007 | 0.027 | −0.034 | 0.117 | 0.097 | −0.031 | 0.030 | 0.047 | 0.055 | 0.032 | |
RMSE | 0.067 | 0.027 | 0.076 | 0.051 | 0.124 | 0.106 | 0.045 | 0.084 | 0.059 | 0.060 | 0.070 | |
MAE | 0.053 | 0.022 | 0.061 | 0.042 | 0.117 | 0.097 | 0.037 | 0.067 | 0.053 | 0.055 | 0.060 | |
ubRMSE | 0.067 | 0.026 | 0.071 | 0.038 | 0.039 | 0.042 | 0.033 | 0.078 | 0.036 | 0.023 | 0.045 | |
LSTM pre | R | 0.633 | 0.604 | 0.328 | 0.336 | 0.610 | 0.443 | 0.684 | 0.578 | 0.466 | 0.555 | 0.524 |
Bias | −0.008 | −0.017 | 0.009 | −0.074 | 0.097 | 0.085 | −0.054 | 0.012 | 0.001 | 0.039 | 0.009 | |
RMSE | 0.073 | 0.042 | 0.083 | 0.084 | 0.105 | 0.096 | 0.066 | 0.081 | 0.044 | 0.047 | 0.072 | |
MAE | 0.059 | 0.033 | 0.069 | 0.076 | 0.097 | 0.085 | 0.056 | 0.068 | 0.033 | 0.041 | 0.062 | |
ubRMSE | 0.072 | 0.039 | 0.082 | 0.041 | 0.041 | 0.045 | 0.039 | 0.081 | 0.044 | 0.026 | 0.051 | |
LSTM pre35 | R | 0.732 | 0.786 | 0.514 | 0.468 | 0.627 | 0.518 | 0.786 | 0.696 | 0.633 | 0.646 | 0.641 |
Bias | −0.005 | −0.006 | 0.009 | −0.042 | 0.119 | 0.096 | −0.025 | 0.032 | 0.028 | 0.038 | 0.024 | |
RMSE | 0.067 | 0.034 | 0.075 | 0.062 | 0.127 | 0.106 | 0.041 | 0.081 | 0.046 | 0.045 | 0.068 | |
MAE | 0.053 | 0.027 | 0.062 | 0.049 | 0.119 | 0.096 | 0.033 | 0.064 | 0.039 | 0.039 | 0.058 | |
ubRMSE | 0.067 | 0.034 | 0.074 | 0.046 | 0.044 | 0.046 | 0.033 | 0.074 | 0.037 | 0.023 | 0.048 | |
N | 391 | 391 | 391 | 390 | 390 | 391 | 378 | 389 | 390 | 391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, Y.; Chen, L. A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data. Water 2025, 17, 819. https://doi.org/10.3390/w17060819
Zhang Y, Chen Y, Chen L. A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data. Water. 2025; 17(6):819. https://doi.org/10.3390/w17060819
Chicago/Turabian StyleZhang, Yueyuan, Yangbo Chen, and Lingfang Chen. 2025. "A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data" Water 17, no. 6: 819. https://doi.org/10.3390/w17060819
APA StyleZhang, Y., Chen, Y., & Chen, L. (2025). A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data. Water, 17(6), 819. https://doi.org/10.3390/w17060819