Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism
Abstract
1. Introduction
2. Chemicals and Methods
2.1. Chemicals
2.2. Experimental Setup
2.3. Analytic Methods
2.4. Theoretical Gaussian Setup
3. Results and Discussion
3.1. Oxidation of BPS by UV/PS
3.2. Effects of PS Dose and pH on the Degradation of BPS by UV/PS
3.3. Effects of Natural Organic Matter on the Degradation of BPS by UV/PS
3.4. The Removal of BPS in Salty Water
3.5. Product Identification and Reaction Mechanisms
3.6. Theoretical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Jiang, J.; Zhou, Y.; Pang, S.Y.; Ma, J.; Jiang, C.; Yang, Y.; Huang, Z.S.; Gu, J.; Guo, Q.; et al. Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Res. 2018, 131, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Rajasärkkä, J.; Koponen, J.; Airaksinen, R.; Kiviranta, H.; Virta, M. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay. Anal. Bioanal. Chem. 2014, 406, 5695–5702. [Google Scholar] [CrossRef] [PubMed]
- Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ. Toxicol. Pharmacol. 2005, 19, 121–130. [Google Scholar] [CrossRef]
- Government of Canada. Order Amending Schedule I to the Hazardous Products Act (Bisphenol A). Pt II; Government of Canada: Ottawa, ON, Canada, 2010; Volume 144.
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef]
- Tsai, W.T. Human health risk on environmental exposure to Bisphenol-A: A review. J. Environ. Sci. Health C 2006, 24, 225–255. [Google Scholar] [CrossRef]
- ECHA (European Chemicals Agency). Bisphenol S Registration Data; European Chemicals Agency: Helsinki, Finland, 2015.
- Guo, H.Y.; Li, H.; Liang, N.; Chen, F.Y.; Liao, S.H.; Zhang, D.; Wu, M.; Pan, B. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite. Environ. Sci. Pollut. Res. 2016, 23, 8976–8984. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.B.; Zhu, L.Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res. 2016, 103, 343–351. [Google Scholar] [CrossRef]
- Liao, C.Y.; Liu, F.; Guo, Y.; Moon, H.B.; Nakata, H.; Wu, Q.; Kannan, K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure. Environ. Sci. Technol. 2012, 46, 9138–9145. [Google Scholar] [CrossRef]
- Ullah, H.; Jahan, S.; Ul Ain, Q.; Shaheen, G.; Ahsan, N. Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere 2016, 152, 383–391. [Google Scholar] [CrossRef]
- Hill, C.E.; Sapouckey, S.A.; Suvorov, A.; Vandenberg, L.N. Developmental exposures to bisphenol S, a BPA replacement, alter estrogen-responsiveness of the female reproductive tract: A pilot study. Cogent Med. 2017, 4, 1317690. [Google Scholar] [CrossRef]
- Danzl, E.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int. J. Environ. Res. Public Health 2009, 6, 1472–1484. [Google Scholar] [CrossRef]
- Gao, X.; Ma, J.; Chen, Y.; Wang, H.S. Rapid responses and mechanism of action for low-dose bisphenol S on ex vivo rat hearts and isolated myocytes: Evidence of female-specific proarrhythmic effects. Environ. Health Perspect. 2015, 123, 571–578. [Google Scholar] [CrossRef]
- Huang, K.C.; Couttenye, R.A.; Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 2002, 49, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Gahrouei, A.E.; Vakili, S.; Zandifar, A.; Pourebrahimi, S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res. 2024, 252, 119029. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.X.; Mao, Q.M.; Zhou, Y.Y.; Wei, J.H.; Liu, X.C.; Yang, J.Y.; Luo, L.; Zhang, J.C.; Chen, H.; Chen, H.B.; et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere 2017, 189, 224–238. [Google Scholar] [CrossRef]
- Moradi, A.; Kazemeini, M.; Hosseinpour, V.; Pourebrahimi, S. Efficient degradation of naproxen in wastewater using Ag-deposited ZnO nanoparticles anchored on a house-of-cards-like MFI-type zeolite: Preparation and physicochemical evaluations of the photocatalyst. J. Water Process Eng. 2024, 60, 105155. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Gago, C.; Bredneva, T.; Iannece, P.; Pazos, M.; Krasnogorskaya, N.; Carotenuto, M. Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs. ultraviolet/peracetic acid. J. Clean. Prod. 2018, 205, 67–75. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Zhang, W.; Lim, K.Y.; Webster, R.D.; Lim, T.T. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res. 2016, 102, 629–639. [Google Scholar] [CrossRef]
- Wang, L.; Fei, Y.; Gong, C.; Shan, Y.; Zhang, Z.; Zhang, F.; Cheng, H. Comparative study of UV/H2O2 and UV/PMS processes for treating pulp and paper wastewater. Water Sci. Technol. 2022, 86, 2032–2044. [Google Scholar] [CrossRef]
- Mo, C.C.; Tian, F.X.; Xu, B.; Lai, F.; Gao, Y.Q.; Ma, Y.; Hu, X.J. Evaluation and comparison of iohexol elimination by UV/peroxymonosulfate and UV/persulfate processes: Radical roles, influence factors and iodinated trihalomethanes formation. J. Water Process Eng. 2024, 67, 106199. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Zhang, L.; Wang, H.; Zhao, Z.; Chen, Y.; Dong, W. Efficient degradation of haloacetic acids by vacuum ultraviolet-activated peroxymonosulfate: Kinetics, mechanisms and theoretical calculations. J. Hazard. Mater. 2024, 478, 135539. [Google Scholar] [CrossRef] [PubMed]
- Dulova, N.; Kattel, E.; Kaur, B.; Trapido, M. UV-induced persulfate oxidation of organic micropollutants in water matrices. Ozone Sci. Eng. 2020, 42, 13–23. [Google Scholar] [CrossRef]
- Antoniou, M.G.; de la Cruz, A.A.; Dionysiou, D.D. Intermediates and reaction pathways from the degradation of Microcystin-LR with sulfate radicals. Environ. Sci. Technol. 2010, 44, 7238–7244. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Gan, L.; Guan, F.Y.; Wang, Y.; Li, J.B.; Zhou, S.G.; Yuan, Y. Bioelectrochemically enhanced degradation of bisphenol S: Mechanistic insights from stable isotope-assisted investigations. iScience 2021, 24, 102014. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Xu, Y.; Liu, M.Q.; Chen, X.J.; Fan, M.J.; Liu, J.N.; Chen, Y.W. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. J. Hazard. Mater. 2021, 403, 124053. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.G.; Zhang, Y.L.; Cheng, X.; Zhou, P.; Wang, J.Q.; Li, W. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation. Environ. Pollut. 2019, 252, 1042–1050. [Google Scholar] [CrossRef]
- Shao, P.H.; Ren, Z.J.; Tian, J.J.; Gao, S.S.; Luo, X.B.; Shi, W.X.; Yan, B.Y.; Li, J.; Cui, F.Y. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin a-Fe2O3 nanosheets with highly exposed (110) facets: A superior photocatalyst for degradation of bisphenol S. Chem. Eng. J. 2017, 323, 64–73. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Peng, Y.R.; Li, Y.; Wu, S.H.; Yu, X.C.; Yang, C.P. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of Sulfamethazine. Chem. Eng. J. 2021, 405, 126661. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, N.; Deng, Y.; Yang, Y.; Ma, Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J. 2012, 195–196, 248–253. [Google Scholar] [CrossRef]
- Xu, X.X.; Chen, J.; Qu, R.J.; Wang, Z.Y. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere 2017, 185, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Li, C.; Pan, X.; Zeng, X.; Liu, J.; Huang, Q.; Feng, J.; Wang, Z. Solid surface-mediated photochemical transformation of decabromodiphenyl ether (BDE-209) in aqueous solution. Water Res. 2017, 125, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pang, S.Y.; Jiang, J.; Ma, J.; Zhou, Y.; Li, J.; Wang, L.H.; Lu, X.T.; Yuan, L.P. Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. Environ. Sci. Technol. 2016, 50, 9608–9618. [Google Scholar] [CrossRef]
- He, P.; Xiong, Y.; Chen, Y.; Liu, M.; Zhu, J.; Gan, M. One-step synthesis of natural montmorillonite/hematite composites with enhanced persulfate catalytic activity for sulfamethoxazole degradation: Efficiency, kinetics, and mechanism. Environ. Res. 2022, 204, 112326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Song, W.; Ma, R.; Yang, J.; Zhang, X.; Huang, F.; Dong, W. Rapid degradation of atrazine by a novel advanced oxidation process of bisulfite/chlorine dioxide: Efficiency, mechanism, pathway. Chem. Eng. J. 2022, 445, 136558. [Google Scholar] [CrossRef]
- Huie, R.E.; Clifton, C.L.; Neta, P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int. J. Radiat. Appl. Instrum. 1991, 38, 477–481. [Google Scholar] [CrossRef]
- Ji, Y.F.; Kong, D.Y.; Lu, J.H.; Jin, H.; Kang, F.X.; Yin, X.M.; Zhou, Q.S. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products. J. Hazard. Mater. 2016, 313, 229–237. [Google Scholar] [CrossRef]
- Deng, J.; Shao, Y.S.; Gao, N.Y.; Xia, S.J.; Tan, C.Q.; Zhou, S.Q.; Hu, X.H. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J. 2013, 222, 150–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Pang, S.Y.; Ma, J.; Duan, J.B.; Guo, Q.; Li, J.; Yang, Y. Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling. Water Res. 2018, 138, 56–66. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Wei, M.; Pan, Z.H.; Li, L.Y.; Liang, J.Y.; Yu, K.F.; Zhang, Y.Y. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. Sci. Total Environ. 2020, 705, 135960. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wong, D.; Bartolo, B.D. Evolution of Cl2− in aqueous NaCl solutions. J. Photoch. 1980, 14, 303–310. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 2014, 48, 2344–2351. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.H.; Cao, Y.; Ma, J.; Jiang, J.; Bai, X.F.; Hu, T. Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals. Chem. Eng. J. 2017, 328, 236–245. [Google Scholar] [CrossRef]
- Amasha, A.; Baalbaki, A. A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen. Chem. Eng. J. 2018, 350, 395–410. [Google Scholar] [CrossRef]
- Naim, S.; Ghauch, A. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chem. Eng. J. 2016, 288, 276–288. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, J.; Qu, R.; Al-Basher, G.; Pan, X.; Ahmed Dar, A.; Shad, A.; Zhou, D.; Wang, Z. Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: Reaction kinetics and formation of co-oligomerization products. Chem. Eng. J. 2021, 403, 126396. [Google Scholar] [CrossRef]
- Qu, R.; Li, C.; Liu, J.; Xiao, R.; Pan, X.; Zeng, X.; Wang, Z.; Wu, J. Hydroxyl radical based photocatalytic degradation of halogenated organic contaminants and paraffin on silica gel. Environ. Sci. Technol. 2018, 120, 7220–7229. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Feng, M.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. Appl. Catal. B-Environ. 2016, 187, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wu, K.; Zhang, C.; You, K.; Ji, Y.; Lu, J.; Chen, J.; Kong, D. Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water 2025, 17, 806. https://doi.org/10.3390/w17060806
Liu G, Wu K, Zhang C, You K, Ji Y, Lu J, Chen J, Kong D. Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water. 2025; 17(6):806. https://doi.org/10.3390/w17060806
Chicago/Turabian StyleLiu, Guoqiang, Kai Wu, Cunliang Zhang, Kai You, Yuefei Ji, Junhe Lu, Jing Chen, and Deyang Kong. 2025. "Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism" Water 17, no. 6: 806. https://doi.org/10.3390/w17060806
APA StyleLiu, G., Wu, K., Zhang, C., You, K., Ji, Y., Lu, J., Chen, J., & Kong, D. (2025). Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water, 17(6), 806. https://doi.org/10.3390/w17060806