Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism
Abstract
:1. Introduction
2. Chemicals and Methods
2.1. Chemicals
2.2. Experimental Setup
2.3. Analytic Methods
2.4. Theoretical Gaussian Setup
3. Results and Discussion
3.1. Oxidation of BPS by UV/PS
3.2. Effects of PS Dose and pH on the Degradation of BPS by UV/PS
3.3. Effects of Natural Organic Matter on the Degradation of BPS by UV/PS
3.4. The Removal of BPS in Salty Water
3.5. Product Identification and Reaction Mechanisms
3.6. Theoretical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Y.; Jiang, J.; Zhou, Y.; Pang, S.Y.; Ma, J.; Jiang, C.; Yang, Y.; Huang, Z.S.; Gu, J.; Guo, Q.; et al. Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Res. 2018, 131, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Rajasärkkä, J.; Koponen, J.; Airaksinen, R.; Kiviranta, H.; Virta, M. Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay. Anal. Bioanal. Chem. 2014, 406, 5695–5702. [Google Scholar] [CrossRef] [PubMed]
- Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system. Environ. Toxicol. Pharmacol. 2005, 19, 121–130. [Google Scholar] [CrossRef]
- Government of Canada. Order Amending Schedule I to the Hazardous Products Act (Bisphenol A). Pt II; Government of Canada: Ottawa, ON, Canada, 2010; Volume 144.
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef]
- Tsai, W.T. Human health risk on environmental exposure to Bisphenol-A: A review. J. Environ. Sci. Health C 2006, 24, 225–255. [Google Scholar] [CrossRef]
- ECHA (European Chemicals Agency). Bisphenol S Registration Data; European Chemicals Agency: Helsinki, Finland, 2015.
- Guo, H.Y.; Li, H.; Liang, N.; Chen, F.Y.; Liao, S.H.; Zhang, D.; Wu, M.; Pan, B. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite. Environ. Sci. Pollut. Res. 2016, 23, 8976–8984. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.B.; Zhu, L.Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res. 2016, 103, 343–351. [Google Scholar] [CrossRef]
- Liao, C.Y.; Liu, F.; Guo, Y.; Moon, H.B.; Nakata, H.; Wu, Q.; Kannan, K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure. Environ. Sci. Technol. 2012, 46, 9138–9145. [Google Scholar] [CrossRef]
- Ullah, H.; Jahan, S.; Ul Ain, Q.; Shaheen, G.; Ahsan, N. Effect of bisphenol S exposure on male reproductive system of rats: A histological and biochemical study. Chemosphere 2016, 152, 383–391. [Google Scholar] [CrossRef]
- Hill, C.E.; Sapouckey, S.A.; Suvorov, A.; Vandenberg, L.N. Developmental exposures to bisphenol S, a BPA replacement, alter estrogen-responsiveness of the female reproductive tract: A pilot study. Cogent Med. 2017, 4, 1317690. [Google Scholar] [CrossRef]
- Danzl, E.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int. J. Environ. Res. Public Health 2009, 6, 1472–1484. [Google Scholar] [CrossRef]
- Gao, X.; Ma, J.; Chen, Y.; Wang, H.S. Rapid responses and mechanism of action for low-dose bisphenol S on ex vivo rat hearts and isolated myocytes: Evidence of female-specific proarrhythmic effects. Environ. Health Perspect. 2015, 123, 571–578. [Google Scholar] [CrossRef]
- Huang, K.C.; Couttenye, R.A.; Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 2002, 49, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Gahrouei, A.E.; Vakili, S.; Zandifar, A.; Pourebrahimi, S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res. 2024, 252, 119029. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.X.; Mao, Q.M.; Zhou, Y.Y.; Wei, J.H.; Liu, X.C.; Yang, J.Y.; Luo, L.; Zhang, J.C.; Chen, H.; Chen, H.B.; et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere 2017, 189, 224–238. [Google Scholar] [CrossRef]
- Moradi, A.; Kazemeini, M.; Hosseinpour, V.; Pourebrahimi, S. Efficient degradation of naproxen in wastewater using Ag-deposited ZnO nanoparticles anchored on a house-of-cards-like MFI-type zeolite: Preparation and physicochemical evaluations of the photocatalyst. J. Water Process Eng. 2024, 60, 105155. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Gago, C.; Bredneva, T.; Iannece, P.; Pazos, M.; Krasnogorskaya, N.; Carotenuto, M. Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs. ultraviolet/peracetic acid. J. Clean. Prod. 2018, 205, 67–75. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Zhang, W.; Lim, K.Y.; Webster, R.D.; Lim, T.T. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes. Water Res. 2016, 102, 629–639. [Google Scholar] [CrossRef]
- Wang, L.; Fei, Y.; Gong, C.; Shan, Y.; Zhang, Z.; Zhang, F.; Cheng, H. Comparative study of UV/H2O2 and UV/PMS processes for treating pulp and paper wastewater. Water Sci. Technol. 2022, 86, 2032–2044. [Google Scholar] [CrossRef]
- Mo, C.C.; Tian, F.X.; Xu, B.; Lai, F.; Gao, Y.Q.; Ma, Y.; Hu, X.J. Evaluation and comparison of iohexol elimination by UV/peroxymonosulfate and UV/persulfate processes: Radical roles, influence factors and iodinated trihalomethanes formation. J. Water Process Eng. 2024, 67, 106199. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Zhang, L.; Wang, H.; Zhao, Z.; Chen, Y.; Dong, W. Efficient degradation of haloacetic acids by vacuum ultraviolet-activated peroxymonosulfate: Kinetics, mechanisms and theoretical calculations. J. Hazard. Mater. 2024, 478, 135539. [Google Scholar] [CrossRef] [PubMed]
- Dulova, N.; Kattel, E.; Kaur, B.; Trapido, M. UV-induced persulfate oxidation of organic micropollutants in water matrices. Ozone Sci. Eng. 2020, 42, 13–23. [Google Scholar] [CrossRef]
- Antoniou, M.G.; de la Cruz, A.A.; Dionysiou, D.D. Intermediates and reaction pathways from the degradation of Microcystin-LR with sulfate radicals. Environ. Sci. Technol. 2010, 44, 7238–7244. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Gan, L.; Guan, F.Y.; Wang, Y.; Li, J.B.; Zhou, S.G.; Yuan, Y. Bioelectrochemically enhanced degradation of bisphenol S: Mechanistic insights from stable isotope-assisted investigations. iScience 2021, 24, 102014. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Xu, Y.; Liu, M.Q.; Chen, X.J.; Fan, M.J.; Liu, J.N.; Chen, Y.W. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. J. Hazard. Mater. 2021, 403, 124053. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.G.; Zhang, Y.L.; Cheng, X.; Zhou, P.; Wang, J.Q.; Li, W. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation. Environ. Pollut. 2019, 252, 1042–1050. [Google Scholar] [CrossRef]
- Shao, P.H.; Ren, Z.J.; Tian, J.J.; Gao, S.S.; Luo, X.B.; Shi, W.X.; Yan, B.Y.; Li, J.; Cui, F.Y. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin a-Fe2O3 nanosheets with highly exposed (110) facets: A superior photocatalyst for degradation of bisphenol S. Chem. Eng. J. 2017, 323, 64–73. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Peng, Y.R.; Li, Y.; Wu, S.H.; Yu, X.C.; Yang, C.P. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of Sulfamethazine. Chem. Eng. J. 2021, 405, 126661. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, N.; Deng, Y.; Yang, Y.; Ma, Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J. 2012, 195–196, 248–253. [Google Scholar] [CrossRef]
- Xu, X.X.; Chen, J.; Qu, R.J.; Wang, Z.Y. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere 2017, 185, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Li, C.; Pan, X.; Zeng, X.; Liu, J.; Huang, Q.; Feng, J.; Wang, Z. Solid surface-mediated photochemical transformation of decabromodiphenyl ether (BDE-209) in aqueous solution. Water Res. 2017, 125, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pang, S.Y.; Jiang, J.; Ma, J.; Zhou, Y.; Li, J.; Wang, L.H.; Lu, X.T.; Yuan, L.P. Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. Environ. Sci. Technol. 2016, 50, 9608–9618. [Google Scholar] [CrossRef]
- He, P.; Xiong, Y.; Chen, Y.; Liu, M.; Zhu, J.; Gan, M. One-step synthesis of natural montmorillonite/hematite composites with enhanced persulfate catalytic activity for sulfamethoxazole degradation: Efficiency, kinetics, and mechanism. Environ. Res. 2022, 204, 112326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Song, W.; Ma, R.; Yang, J.; Zhang, X.; Huang, F.; Dong, W. Rapid degradation of atrazine by a novel advanced oxidation process of bisulfite/chlorine dioxide: Efficiency, mechanism, pathway. Chem. Eng. J. 2022, 445, 136558. [Google Scholar] [CrossRef]
- Huie, R.E.; Clifton, C.L.; Neta, P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int. J. Radiat. Appl. Instrum. 1991, 38, 477–481. [Google Scholar] [CrossRef]
- Ji, Y.F.; Kong, D.Y.; Lu, J.H.; Jin, H.; Kang, F.X.; Yin, X.M.; Zhou, Q.S. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products. J. Hazard. Mater. 2016, 313, 229–237. [Google Scholar] [CrossRef]
- Deng, J.; Shao, Y.S.; Gao, N.Y.; Xia, S.J.; Tan, C.Q.; Zhou, S.Q.; Hu, X.H. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J. 2013, 222, 150–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Pang, S.Y.; Ma, J.; Duan, J.B.; Guo, Q.; Li, J.; Yang, Y. Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling. Water Res. 2018, 138, 56–66. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Wei, M.; Pan, Z.H.; Li, L.Y.; Liang, J.Y.; Yu, K.F.; Zhang, Y.Y. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products. Sci. Total Environ. 2020, 705, 135960. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wong, D.; Bartolo, B.D. Evolution of Cl2− in aqueous NaCl solutions. J. Photoch. 1980, 14, 303–310. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 2014, 48, 2344–2351. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, X.H.; Cao, Y.; Ma, J.; Jiang, J.; Bai, X.F.; Hu, T. Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals. Chem. Eng. J. 2017, 328, 236–245. [Google Scholar] [CrossRef]
- Amasha, A.; Baalbaki, A. A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen. Chem. Eng. J. 2018, 350, 395–410. [Google Scholar] [CrossRef]
- Naim, S.; Ghauch, A. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chem. Eng. J. 2016, 288, 276–288. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, J.; Qu, R.; Al-Basher, G.; Pan, X.; Ahmed Dar, A.; Shad, A.; Zhou, D.; Wang, Z. Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: Reaction kinetics and formation of co-oligomerization products. Chem. Eng. J. 2021, 403, 126396. [Google Scholar] [CrossRef]
- Qu, R.; Li, C.; Liu, J.; Xiao, R.; Pan, X.; Zeng, X.; Wang, Z.; Wu, J. Hydroxyl radical based photocatalytic degradation of halogenated organic contaminants and paraffin on silica gel. Environ. Sci. Technol. 2018, 120, 7220–7229. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Feng, M.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. Appl. Catal. B-Environ. 2016, 187, 1–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wu, K.; Zhang, C.; You, K.; Ji, Y.; Lu, J.; Chen, J.; Kong, D. Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water 2025, 17, 806. https://doi.org/10.3390/w17060806
Liu G, Wu K, Zhang C, You K, Ji Y, Lu J, Chen J, Kong D. Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water. 2025; 17(6):806. https://doi.org/10.3390/w17060806
Chicago/Turabian StyleLiu, Guoqiang, Kai Wu, Cunliang Zhang, Kai You, Yuefei Ji, Junhe Lu, Jing Chen, and Deyang Kong. 2025. "Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism" Water 17, no. 6: 806. https://doi.org/10.3390/w17060806
APA StyleLiu, G., Wu, K., Zhang, C., You, K., Ji, Y., Lu, J., Chen, J., & Kong, D. (2025). Efficient Degradation of Bisphenol S by Ultraviolet/Persulfate Oxidation in Ultra-Pure and Saline Waters: Effects of Operating Conditions and Reaction Mechanism. Water, 17(6), 806. https://doi.org/10.3390/w17060806