Water Reuse—Retrospective Study on Sustainable Future Prospects
Abstract
:1. Background
1.1. History of Water Reuse in the Americas, Arizona, and Japan
Prospectus
1.2. Reclamation Technologies
1.3. Groundwater Recharge
1.4. Groundwater Management
1.5. Agriculture/Irrigation
2. Legal and Regulatory Landscape
2.1. National and Regional Regulations
2.2. Direct Potable Reuse
3. Emerging Contaminants
3.1. Pathogens
3.2. Log-Reduction Monitoring Implementation in OCWD
3.3. Per- and Poly-Fluoroalkyl Substances (PFAS)
- (i)
- Treatment Technologies (High-Pressure Membrane Processes): Reverse Osmosis and Nanofiltration
- (ii)
- Treatment Technologies (Adsorption Processes): GAC and IEX
4. Contaminants Removal and Performance Monitoring Technologies
4.1. Hard Senor
- (i)
- Sensors for Physical Properties
- (ii)
- Sensors for Microbial Detection
4.2. Soft Sensors
4.3. Industrial Wastewater Reuse
5. Wastewater Reuse in Semiconductor Industry
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekwurzel, B.; Schlosser, P.; Smethie, W.M., Jr.; Plummer, L.N.; Busenberg, E.; Michel, R.L.; Weppernig, R.; Stute, M. Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons and 85Kr. Water Resour. Res. 1994, 30, 1693–1708. [Google Scholar] [CrossRef]
- USGS. Groundwater Age. 2019. Available online: https://www.usgs.gov/mission-areas/water-resources/science/groundwater-age\ (accessed on 8 August 2023).
- McMahon, P.B.; Plummer, L.N.; Böhlke, J.K.; Shapiro SDHinkle, S.R. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol. J. 2011, 19, 779–800. [Google Scholar] [CrossRef]
- Schladweiler, J.C. Tracking Down the Roots of Our Sanitary Sewers. Historian: Arizona Water and Pollution Control Association (WEF, Section—AWWA) (Phoenix, AZ). 2002. Available online: http://www.sewerhistory.org/time-lines/tracking-down-the-roots-of-our-sanitary-sewers (accessed on 8 August 2023).
- Smith, M. The aztec silent majority: William, T. Sanders and the study of the aztec peasantry. In Arqueología Mesoamericana: Homenaje a William; Sanders, T., Mastache, A.G., Parsons, J.R., Santley, R.S., Serra Puche, M.C., Eds.; Instituto Nacional de Antropología e Historia: Mexico City, Mexico, 1996; Volume 1, pp. 375–386. [Google Scholar]
- Villalonga, G.A. Hydraulic Imperialist from Aztecs in the Mexico Valley. Water Technol. 2007, 27, 78–91. (In Spanish) [Google Scholar]
- UNESCO. World Heritage Convention. World Heritage Office (INAH) Mexico’s National Commission for UNESCO (CONALMEX) Puebla 95. 2004. Available online: https://whc.unesco.org/en/tentativelists/1968/ (accessed on 8 August 2023).
- Barshan, M. Rocks, Clay and Bricks, Water in Persepolis, Burned City and Bam; Oragh Publisher: Tehran, Iran, 2011. [Google Scholar]
- USEPA. Summary of the Clean Water Act. 2023. Available online: https://www.epa.gov/laws-regulations/history-clean-water-act (accessed on 14 May 2024).
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water Reuse: From Ancient to Modern Times and the Future. Front. Environ. Sci. 2018, 6, 26. [Google Scholar] [CrossRef]
- McGuire, M.J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives; American Water Works Association: Denver, CO, USA, 2013. [Google Scholar]
- Tchobanoglous, G.; Leverenz, H.; Nellor MMCrook, J. Direct Potable Reuse: A Path Forward; WateReuse Research Foundation: Alexandria, VA, USA, 2011. [Google Scholar]
- Davis, M.L. 2019. Direct and Indirect Potable Reuse. In Water and Wastewater Engineering: Design Principles and Practice, 2nd ed.; McGraw-Hill Education. Government of Canada: New York, NY, USA, 2017; pp. 1237–1252. [Google Scholar]
- Available online: https://www.canada.ca/en/environment-climate-change/services/water-overview/pollution-causes-effects/groundwater-contamination.html (accessed on 5 July 2024).
- McBurnett, L.R.; Holt, N.T.; Alum, A.; Abbaszadegan, M. Legionella—A threat to groundwater: Pathogen transport in recharge basin. Sci. Total Environ. 2018, 621, 1485–1490. [Google Scholar] [CrossRef]
- Abbaszadegan, M.; LeChevallier, M.; Gerba, C.P. Occurrence of viruses in US groundwaters. J.-Am. Water Work. Assoc. 2003, 95, 107–120. [Google Scholar] [CrossRef]
- Borchardt, M.A.; Bertz, P.D.; Spencer, S.K.; Battigelli, D.A. Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl. Environ. Microbiol. 2003, 69, 1172–1180. [Google Scholar] [CrossRef]
- Locas, A.; Barthe, C.; Barbeau, B.; Carrière, A.; Payment, P. Virus occurrence in municipal groundwater sources in Quebec, Canada. Can. J. Microbiol. 2007, 53, 688–694. [Google Scholar] [CrossRef]
- Bluefield Research. Looking Beyond Drought, 17 States Invest in Water Reuse as a Long-Term Supply Strategy. 2017. Available online: https://www.bluefieldresearch.com/ns/looking-beyond-drought-17-states-invest-water-reuse/ (accessed on 9 August 2023).
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Seo, K.W.; Ryu, D.; Eom, J.; Jeon, T.; Kim, J.S.; Youm, K. Drift of Earth’s pole confirms groundwater depletion as a significant contributor to global sea level rise 1993–2010. Geophys. Res. Lett. 2023, 50, e2023GL103509. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar] [PubMed]
- Van der Gun, J. Large Aquifer Systems Around the World; The Groundwater Project: Guelph, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Hussein, H.; Poplawsky, M.; Mohapatra, T. The political context of change in transboundary freshwater agreements. Environ. Sci. Policy 2023, 149, 103572. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Snyder, S.A. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef]
- Sneegas, G.; Seghezzo, L.; Brannstrom, C.; Jepson, W.; Eckstein, G. Do not put all your eggs in one basket: Social perspectives on desalination and water recycling in Israel. Water Policy 2022, 24, 1772–1795. [Google Scholar] [CrossRef]
- USEPA. Water Reuse Regulations and Guidelines. Available online: https://www.epa.gov/waterreuse/maps-states-water-reuse-regulations-or-guidelines (accessed on 23 March 2024).
- Gerling, A. Potable Reuse 101: An Innovative and Sustainable Water Supply Solution; American Water Works Association: Denver, CO, USA, 2016. [Google Scholar]
- Tchobanoglous, G.; Cotruvo, J.; Crook, J.; McDonald, E.; Olivieri, A.; Salveson, A.; Trussell, R.S. Framework for Direct Potable Reuse; WateReuse Research Foundation: Alexandria, VA, USA, 2015. [Google Scholar]
- Padervand, M.; Lichtfouse, E.; Robert, D. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 2020, 18, 807–828. [Google Scholar] [CrossRef]
- Abbaszadegan, M.; Monteiro, P.; Nwachuku, N.; Alum, A.; Ryu, H. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment. J. Environ. Sci. Health Part A 2008, 43, 171–177. [Google Scholar] [CrossRef]
- Grabow, W. Bacteriophages: Update on application as models for viruses in water. Water SA 2001, 27, 251–268. [Google Scholar] [CrossRef]
- Jofre, J. Indicators of waterborne viruses. In Human Viruses in Water; Bosch, A., Ed.; Perspectives in Medical Virology, 17; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- QEPA. Queensland Water Recycling Guidelines; WaterWise; Queensland Environmental Protection Agency: Brisbane, Australia, 2005. [Google Scholar]
- NHMRC-NRMMC. Australian Drinking Water Guidelines; Natural Resource Management Ministerial Council, National Health and Medical Research Council: Canberra, Australia, 2011.
- DEC. Western Australian Guidelines for Biosolids Management; Department of Environment and Conservation: Perth, Australia, 2012. [Google Scholar]
- USEPA. National Primary Drinking Water Regulations: Groundwater Rule; Final Rule. 40 CFR, Federal Register; The Daily Journal of the United States Government: Washington, DC, USA, 2006; Volume 71.
- Jofre, J.; Lucena, F.; Blanch, A.R.; Muniesa, M. Coliphages as Model Organisms in the Characterization and Management of Water Resources. Water 2016, 8, 199. [Google Scholar] [CrossRef]
- Arts, P.J.; Kelly, J.D.; Midgley, C.M.; Anglin, K.; Lu, S.; Abedi, G.R.; Andino, R.; Bakker, K.M.; Banman, B.; Boehm, A.B.; et al. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. mSphere 2023, 8, e0013223. [Google Scholar] [CrossRef]
- Park, G.W.; Ng, T.F.F.; Freeland, A.L.; Marconi, V.C.; Boom, J.A.; Staat, M.A.; Montmayeur, A.M.; Browne, H.; Narayanan, J.; Payne, D.C.; et al. CrAssphage as a Novel Tool to Detect Human Fecal Contamination on Environmental Surfaces and Hands. Emerg. Infect. Dis. 2020, 26, 1731–1739. [Google Scholar] [CrossRef]
- Kitajima, M.; Sassi, H.P.; Torrey, J.R. Pepper mild mottle virus as a water quality indicator. NPI Clean Water 2018, 1, 19. [Google Scholar] [CrossRef]
- NRMMC-EPHC-AHMC. Australian Guidelines for Water Recycling: Managing Health and Environmental Risks: Phase 1. National Water Quality Management Strategy; Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, Australian Health Ministers’ Conference: Canberra, Australia, 2006. [Google Scholar]
- WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 2, Wastewater Use in Agriculture. [Google Scholar]
- USEPA. Guidelines for Water Reuse; (EPA/600/R-12/618); United States Environmental Protection Agency: Washington, DC, USA, 2012.
- Havelaar, A.; Melse, J. Quantifying Public Health Risk in the WHO Guidelines for Drinking-Water Quality: A Burden of Disease Approach; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Ryu, H.; Addor, Y.; Brinkman, N.E.; Ware, M.W.; Boczek, L.; Hoelle, J.; Villegas, E.N. Understanding microbial loads in wastewater treatment works as source water for water reuse. Water 2021, 13, 1452. [Google Scholar] [CrossRef] [PubMed]
- California Regional Water Quality Control Board. Groundwater Replenishment System 2022 Annual Report. 2022. Available online: https://www.waterboards.ca.gov/santaana/board_decisions/adopted_orders/orders/2022/r8-2022-0002.pdf (accessed on 15 May 2024).
- Orange County Water District, Groundwater Replenishment System. Annual Report (2022). 2022. Available online: https://www.ocwd.com/wp-content/uploads/2022-GWRS-Annual-Report.pdf (accessed on 6 August 2023).
- State Water Resources Control Board 2018. The 2018 California Integrated Report Is Available on the State Water Board’s Website. Available online: https://www.waterboards.ca.gov/water_issues/programs/water_quality_assessment/2018_integrated_report.html (accessed on 15 May 2024).
- Steinle-Darling, E.; Salveson, A.; Sutherland, J.; Dickenson, E.; Hokanson, D.; Trussell, S.; Stanford, B. Direct Potable Reuse Monitoring: Testing Water Quality in a Municipal Wastewater Effluent Treated to Drinking Water Standards, Texas Water Development. 2016. Available online: https://www.twdb.texas.gov/publications/reports/contracted_reports/doc/1348321632_vol1.pdf (accessed on 6 August 2023).
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Davis, M.J.B.; Evich, M.G.; Goodrow, S.M.; Washington, J.W. Environmental Fate of Cl-PFPECAs: Accumulation of Novel and Legacy Perfluoroalkyl Compounds in Real-World Vegetation and Subsoils. Environ. Sci. Technol. 2023, 57, 8994–9004. [Google Scholar] [CrossRef]
- Barisci, S.; Suri, R. Occurrence and Removal of Poly/Perfluoroalkyl Substances (PFAS) in Municipal and Industrial Wastewater Treatment Plants. Water Sci. Technol. 2021, 84, 3442–3468. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.A.; Mortazavian, S.; Gonzalez, D.J.; Bott, C.; Hooper, J.; Schaefer, C.E.; Dickenson, E.R. Poly- and Perfluoroalkyl Substances in Municipal Wastewater Treatment Plants in the United States: Seasonal Patterns and Meta-Analysis of Long-Term Trends and Average Concentrations. ACS EST Water 2022, 2, 690–700. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS removal by ion exchange resins: A review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Lee, T.; Speth TFNadagouda, M.N. High-pressure membrane filtration processes for separation of Per- and polyfluoroalkyl substances (PFAS). Chem. Eng. J. 2022, 431, 134023. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, X.; Faria, A.F.; Deliz Quiñones, K.Y.; Zhang, C.; He, Q.; Ma, J.; Shen, Y.; Zhi, Y. Evaluating the efficiency of nanofiltration and reverse osmosis membrane processes for the removal of per- and polyfluoroalkyl substances from water: A critical review. Sep. Purif. Technol. 2022, 302, 122161. [Google Scholar] [CrossRef]
- Murray, C.C.; Marshall, R.E.; Liu, C.J.; Vatankhah HBellona, C.L. PFAS treatment with granular activated carbon and ion exchange resin: Comparing chain length, empty bed contact time, and cost. J. Water Process Eng. 2021, 44, 102342. [Google Scholar] [CrossRef]
- WHO. Potable Reuse: Guidance for Producing Safe Drinking Water; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Verma, S.; Varma, R.S.; Nadagouda, M.N. Remediation and mineralization processes for per- and polyfluoroalkyl substances (PFAS) in water: A review. Sci. Total Environ. 2021, 794, 148987. [Google Scholar] [CrossRef] [PubMed]
- Mastropietro, T.F.; Bruno, R.; Pardo, E.; Armentano, D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: Overview, challenges and future perspectives. Dalton Trans. 2021, 50, 5398–5410. [Google Scholar] [CrossRef]
- Fujioka, T.; Khan, S.J.; Poussade, Y.; Drewes, J.E.; Nghiem, L.D. N-nitrosamine removal by reverse osmosis for indirect potable water reuse—A critical review based on observations from laboratory-, pilot- and full-scale studies. Sep. Purif. Technol. 2012, 98, 503–515. [Google Scholar] [CrossRef]
- Solley, D.; Gronow, C.; Tait, S.; Bates JBuchanan, A. Managing the reverse osmosis concentrate from the Western Corridor Recycled Water Scheme. Water Pract. Technol. 2010, 5, 18. [Google Scholar] [CrossRef]
- Tang, C.Y.; Fu, Q.S.; Criddle, C.S.; Leckie, J.O. Effect of Flux (Transmembrane Pressure) and Membrane Properties on Fouling and Rejection of Reverse Osmosis and Nanofiltration Membranes Treating Perfluorooctane Sulfonate Containing Wastewater. Environ. Sci. Technol. 2007, 41, 2008–2014. [Google Scholar] [CrossRef]
- Tang, C.Y.; Fu, Q.S.; Robertson, A.P.; Criddle CSLeckie, J.O. Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environ. Sci. Technol. 2006, 40, 7343–7349. [Google Scholar] [CrossRef] [PubMed]
- Soriano, Á.; Gorri, D.; Urtiaga, A. Selection of High Flux Membrane for the Effective Removal of Short-Chain Perfluorocarboxylic Acids. Ind. Eng. Chem. Res. 2019, 58, 3329–3338. [Google Scholar] [CrossRef]
- Cyna, B.; Chagneau, G.; Bablon, G.; Tanghe, N. Two years of nanofiltration at the Méry-sur-Oise plant, France. Desalination 2002, 147, 69–75. [Google Scholar] [CrossRef]
- Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C.O.; Elimelech, M. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environ. Sci. Technol. 2018, 52, 7279–7288. [Google Scholar] [CrossRef]
- Hang, X.; Chen, X.; Luo, J.; Cao, W.; Wan, Y. Removal and recovery of perfluorooctanoate from wastewater by nanofiltration. Sep. Purif. Technol. 2015, 145, 120–129. [Google Scholar] [CrossRef]
- Toure, H.; Anwar Sadmani, A.H.M. Nanofiltration of perfluorooctanoic acid and perfluorooctane sulfonic acid as a function of water matrix properties. Water Supply 2019, 19, 2199–2205. [Google Scholar] [CrossRef]
- Rostvall, A.; Zhang, W.; Dürig, W.; Renman, G.; Wiberg, K.; Ahrens, L.; Gago-Ferrero, P. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests—Role of physicochemical properties. Water Res. 2018, 137, 97–106. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Esfahani, E.B.; Mohseni, M. Effects of water matrix on per- and poly-fluoroalkyl substances (PFAS) treatment: Physical-separation and degradation processes—A review. J. Hazard. Mater. Adv. 2023, 10, 100322. [Google Scholar] [CrossRef]
- Chow, S.J.; Croll, H.C.; Ojeda, N.; Klamerus, J.; Capelle, R.; Oppenheimer, J.; Jacangelo, J.G.; Schwab, K.J.; Prasse, C. Comparative investigation of PFAS adsorption onto activated carbon and anion exchange resins during long-term operation of a pilot treatment plant. Water Res. 2022, 226, 119198. [Google Scholar] [CrossRef]
- Dixit, F.; Barbeau, B.; Mostafavi, S.G.; Mohseni, M. PFAS and DOM removal using an organic scavenger and PFAS-specific resin: Trade-off between regeneration and faster kinetics. Sci. Total Environ. 2021, 754, 142107. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, E.; Alum, A.; Abbaszadegan, M. Biochemical signature assay for use in a biosensor platform to detect bacteria in drinking water biofilms. J. Environ. Sci. Health Part A 2013, 48, 925–932. [Google Scholar]
- Hesari, N.; Alum, A.; Elzein, M.; Abbaszadegan, M. A biosensor platform for rapid detection of E. coli in drinking water. Enzym. Microb. Technol. 2015, 83, 22–28. [Google Scholar] [CrossRef]
- Kato, T.; Miura, T.; Okabe, S.; Sano, D. Bayesian modeling of enteric virus density in wastewater using left-censored data. Food Environ. Virol. 2013, 5, 185–193. [Google Scholar] [CrossRef]
- Kadoya, S.S.; Nishimura, O.; Kato, H.; Sano, D. Predictive water virology using regularized regression analyses for projecting virus inactivation efficiency in ozone disinfection. Water Res. X 2021, 11, 100093. [Google Scholar] [CrossRef]
- Ching, P.M.L.; So, H.Y.; Morck, T. Advances in soft sensors for wastewater treatment plants: A systematic review. J. Water Process Eng. 2021, 44, 102367. [Google Scholar] [CrossRef]
- McMeekin, T.; Olley, J.; Ratkowsky, D.; Corkrey, R.; Ross, T. Predictive microbiology theory and application: Is it all about rates? Food Control 2013, 29, 290–299. [Google Scholar] [CrossRef]
- Baranyi, J.; Tamplin, M.L. ComBase: A common dataset on microbial responses to food environments. J. Food Prot. 2004, 67, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- WHO. Water Safety Plan Manual: Step-by-Step Risk Management for Drinking-Water Suppliers, 2nd ed.; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/i/item/9789240067691 (accessed on 6 August 2023).
- WHO. Sanitation Safety Planning: Manual for Safe Use and Disposal of Wastewater Greywater and Excreta. 2015. Available online: https://apps.who.int/iris/handle/10665/171753 (accessed on 6 August 2023).
- Cornu, M.; Billoir, E.; Bergis, H.; Beaufort, A.; Zuliani, V. Modeling microbial competition in food: Application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products. Food Microbiol. 2011, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, S.S.; Nishimura, O.; Kato, H.; Sano, D. Predictive water virology: Hierarchical Bayesian modeling for estimating virus inactivation curve. Water 2019, 11, 2187. [Google Scholar] [CrossRef]
- Kadoya, S.S.; Nishimura, O.; Kato, H.; Sano, D. Regularized regression analysis for the prediction of virus inactivation efficiency by chloramine disinfection. Environ. Sci. Water Res. Technol. 2020, 6, 3341. [Google Scholar] [CrossRef]
- Oishi, W.; Kadoya, S.; Nishimura, O.; Rose, B.J.; Sano, D. Hierarchical Bayesian modeling for predictive environmental microbiology toward a safe use of human excreta: Systematic review and meta-analysis. J. Environ. Manag. 2021, 284, 112088. [Google Scholar] [CrossRef]
- OECD. Forward-Looking Scenarios of Climate Finance Provided and Mobilised by Developed Countries in 2021–2025: Technical Note, Climate Finance and the USD 100 Billion Goal; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, N.; Cai, H.; Chen, X.; Wu, Y. Water strategies and practices for sustainable development in the semiconductor industry. Water Cycle 2023, 4, 12–16. [Google Scholar] [CrossRef]
- You, S.H.; Tseng, D.H.; Guo, G.L. A case study on the wastewater reclamation and reuse in the semiconductor industry. Resour. Conserv. Recycl. 2001, 32, 73–81. [Google Scholar] [CrossRef]
- Eng, C.Y.; Yan, D.; Withanage, N.; Liang, Q.; Zhou, Y. Wastewater treatment and recycle from a semiconductor industry: A demo-plant study. Water Pract. Technol. 2019, 14, 371–379. [Google Scholar] [CrossRef]
- Huang, C.J.; Yang, B.M.; Chen, K.S.; Chang, C.C.; Kao, C.M. Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desalination 2011, 278, 203–210. [Google Scholar] [CrossRef]
Non-Potable Reuse | Potable Reuse | ||
---|---|---|---|
Planned Potable Reuse | Un-Planned (de facto) Potable Reuse | ||
Indirect | Direct | Indirect | |
• Agriculture • Parks, roadways, and sports fields • Fire suppression • Construction • Dust control • Industry • Power plants and refineries • Toilet flushing • Replenishment of lakes, reservoirs, and aquifers | GWRS: percolation basins in Anaheim filter through sand and gravel before returning to the drinking water system | Windhoek, Namibia, since 1968 CRMWD Texas, Started operation in April 2013 Other • Brownwood, Texas, • Wichita Falls | Trinity River—treated wastewater from Dallas/Fort Worth is delivered to Lake Livingston, the main drinking water source for Houston |
US EPA 2012 | WHO 2016 | EU 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Parameter/Category | A | B | A | B | A | B | C | D |
E. coli (CFU/100 mL) | - | - | 1000 | - | 10 | 100 | 1000 | 10,000 |
Fecal coliforms (CFU/100 mL) | 0 | 200 | - | - | - | - | - | - |
BOD5 (mg/L) | 10 | 30 | - | - | 10 | 25 | 25 | 25 |
TSS (mg/L) | - | 30 | - | - | 10 | 35 | 35 | 35 |
Turbidity (NTU) | 2 | - | - | - | 5 | - | - | - |
Intestinal nematodes (eggs/L) | - | - | 1 | 1 | 1 | 1 | 1 | 1 |
Categories of Reuse Applications—Based on End Use | U.S States That Have Developed Regulations or Guidelines for the Respective End Use Category |
---|---|
Agriculture Reuse | WA, OR, CA, ID, MT, NV, AZ, UT, WY, CO, NM, NE, OK, TX, MN, IN, AL, GA, FL, NC, VA, PA, MD, DE, NJ, RI, MA, HI |
Environmental Restoration Reuse | WA, MT, ID, NV, FL, NC, PA, MA |
Impoundments Reuse | WA, OR, CA, NV, MT, UT, AZ, NM, TX, PA, MA, HI |
Industry Reuse | OR, CA, NV, UT, HI, MN, WI, GA, FL, VA, PA, RI, MA, NJ, MD |
Landscaping Reuse | WA, OR, CA, NV, ID, MT, WY, UT, AZ, NM, CO, SD, OK, TX, MN, IA, WI, IN, OH, PA, VA, MD, DE, NJ, RI. NH, MA, SC, GA, AL, FL |
Consumption by Livestock Reuse | OR, AZ, NM, HI, OK, VA |
Centralized Non-Potable Reuse | WA, OR, CA, NV, ID, MT, UT, AZ, NM, CO, OK, TX, MN, WI, GA, VA, PA, VT, MA, HI |
Onsite Non-Potable Reuse | OR, CA, NM, CO, TX, OK, MN, WI, OH, GA, FL, HI |
Potable Reuse | WA, OR, CA, NV, MT, CO, NM, TX, OK, OH, PA, MA, VA, NC, FL |
Agency | Pathogen | ||
---|---|---|---|
Enteric Virus | Cryptosporidium | Giardia | |
NWRI 2013 | 12 | 10 | 9 (Salmonella) |
California for IPR Using Groundwater Replenishment | 12 | 10 | 10 |
California Water Board draft | 16 | 11 | 10 |
California Water Board 2021 | 20 | 15 | 14 |
Texas (Big Spring Project) | 8 | 5.5 | 6 |
Texas Commission on Environmental Quality (TCEQ) 2014 | 2.2 × 107 | 3 × 105 | 7 × 107 |
Altamonte Springs, Florida (2018) | 11.2 (Genome) 5.8 (Culture) | 3.9 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaszadegan, M.; Alum, A.; Kitajima, M.; Fujioka, T.; Matsui, Y.; Sano, D.; Katayama, H. Water Reuse—Retrospective Study on Sustainable Future Prospects. Water 2025, 17, 789. https://doi.org/10.3390/w17060789
Abbaszadegan M, Alum A, Kitajima M, Fujioka T, Matsui Y, Sano D, Katayama H. Water Reuse—Retrospective Study on Sustainable Future Prospects. Water. 2025; 17(6):789. https://doi.org/10.3390/w17060789
Chicago/Turabian StyleAbbaszadegan, Morteza, Absar Alum, Masaaki Kitajima, Takahiro Fujioka, Yasuhiro Matsui, Daisuke Sano, and Hiroyuki Katayama. 2025. "Water Reuse—Retrospective Study on Sustainable Future Prospects" Water 17, no. 6: 789. https://doi.org/10.3390/w17060789
APA StyleAbbaszadegan, M., Alum, A., Kitajima, M., Fujioka, T., Matsui, Y., Sano, D., & Katayama, H. (2025). Water Reuse—Retrospective Study on Sustainable Future Prospects. Water, 17(6), 789. https://doi.org/10.3390/w17060789