Unraveling the Plastic Pollution in the Aquatic Environment of the Croatian Krk Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Locations
2.2. Methodology
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Parameters
3.2. Occurrence and Distribution of MPs
3.3. Shape, Size, and Color Distribution of MPs
3.4. Quantification of NPs
3.5. Factor Analysis and Correlation of Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.J.; Su, L.C.; Ruan, H.D.; Chen, J.J.; Lu, J.Z.; Lee, C.H.; Jiang, S.Y. Quantitative and qualitative determination of microplastics in oyster, seawater and sediment from the coastal areas in Zhuhai, China. Mar. Pollut. Bull. 2021, 164, 112000. [Google Scholar] [CrossRef]
- Musa, I.; Auta, H.; Ilyasu, U.; Aransiola, S.; Makun, H.; Adabara, N.; Abioye, O.; Aziz, A.; Jayanthi, B.; Maddela, N.; et al. Micro- and Nanoplastics in Environment: Degradation, Detection, and Ecological Impact. Int. J. Environ. Res. 2024, 18, 1. [Google Scholar] [CrossRef]
- Râpă, M.; Cârstea, E.M.; Saulean, A.A.; Popa, C.L.; Matei, E.; Predescu, A.M.; Predescu, C.; Dontu, S.I.; Dinca, A.G. An Overview of the Current Trends in Marine Plastic Litter Management for a Sustainable Development. Recycling 2024, 9, 30. [Google Scholar] [CrossRef]
- Orthodoxou, D.L.; Loizidou, X.I.; Baldwin, C.; Kocareis, C.; Karonias, A.; Ates, M.A. Seasonal and geographic variations of marine litter: A comprehensive study from the island of Cyprus. Mar. Pollut. Bull. 2022, 177, 113495. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Nair, A.T. The fate of microplastics in wastewater treatment plants: An overview of source and remediation technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Brown, E.; MacDonald, A.; Allen, S.; Allen, D. The potential for a plastic recycling facility to release microplastic pollution and possible filtration remediation effectiveness. J. Hazard. Mater. Adv. 2023, 10, 100309. [Google Scholar] [CrossRef]
- Nguyen, T.-T.T.; Ha, N.-H.; Bui, T.-K.L.; Nguyen, K.L.P.; Tran, D.-P.T.; Nguyen, H.Q.; El-Arini, A.; Schuyler, Q.; Nguyen, T.T.L. Baseline Marine Litter Surveys along Vietnam Coasts Using Citizen Science Approach. Sustainability 2022, 14, 4919. [Google Scholar] [CrossRef]
- Faussone, G.C.; Krzan, A.; Grilc, M. Conversion of Marine Litter from Venice Lagoon into Marine Fuels via Thermochemical Route: The Overview of Products, Their Yield, Quality and Environmental Impact. Sustainability 2021, 13, 9481. [Google Scholar] [CrossRef]
- Islam, A.; Hasan, M.; Sadia, M.; Mubin, A.; Ali, M.; Senapathi, V.; Idris, A.; Malafaia, G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. Environ. Res. 2024, 250, 118543. [Google Scholar] [CrossRef]
- Rapa, M.; Darie-Nita, R.N.; Matei, E.; Predescu, A.-M.; Berbecaru, A.-C.; Predescu, C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers 2023, 15, 2425. [Google Scholar] [CrossRef]
- Atugoda, T.; Piyumali, H.; Wijesekara, H.; Sonne, C.; Lam, S.; Mahatantila, K.; Vithanage, M. Nanoplastic occurrence, transformation and toxicity: A review. Environ. Chem. Lett. 2023, 21, 363–381. [Google Scholar] [CrossRef]
- Mahendran, R.; Ramaswamy, S. Nanoplastics as Trojan Horses: Deciphering Complex Connections and Environmental Ramifications: A Review. Chem. Afr. J. Tunis. Chem. Soc. 2024, 7, 2265–2282. [Google Scholar] [CrossRef]
- Davranche, M.; Veclin, C.; Pierson-Wickmann, A.-C.; El Hadri, H.; Grassl, B.; Rowenczyk, L.; Dia, A.; Ter Halle, A.; Blancho, F.; Reynaud, S.; et al. Are nanoplastics able to bind significant amount of metals? The lead example. Environ. Pollut. 2019, 249, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Villarrubia-Gómez, P.; Cornell, S.E.; Fabres, J. Marine plastic pollution as a planetary boundary threat—The drifting piece in the sustainability puzzle. Mar. Policy 2018, 96, 213–220. [Google Scholar] [CrossRef]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.C.; Werorilangi, S.; Teh, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 10. [Google Scholar] [CrossRef]
- Camacho, M.; Herrera, A.; Gómez, M.; Acosta-Dacal, A.; Martínez, I.; Henríquez-Hernández, L.A.; Luzardo, O.P. Organic pollutants in marine plastic debris from Canary Islands beaches. Sci. Total Environ. 2019, 662, 22–31. [Google Scholar] [CrossRef]
- Alkan, N.; Alkan, A. Chemicals associated with plastics and their ecological risks. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation Publication; Turkish Marine Research Foundation-Tudav: Istanbul, Turkey, 2020; Volume 56, pp. 326–343. [Google Scholar]
- Schmidt, N.; Castro-Jiménez, J.; Fauvelle, V.; Ourgaud, M.; Sempéré, R. Occurrence of organic plastic additives in surface waters of the Rhone River (France). Environ. Pollut. 2020, 257, 10. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef]
- Oliveira, M.; Almeida, M.; Miguel, I. A micro(nano)plastic boomerang tale: A never ending story? Trac-Trends Anal. Chem. 2019, 112, 196–200. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.Y.; Jarvis, P.; Zhou, W.; Zhang, J.P.; Chen, J.P.; Tan, Q.W.; Tian, Y. Occurrence, removal and potential threats associated with microplastics in drinking water sources. J. Environ. Chem. Eng. 2020, 8, 104527. [Google Scholar] [CrossRef]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci. Total Environ. 2021, 791, 148175. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.F.; Lin, S.Y.; Cao, G.D.; Wu, J.B.; Jin, H.B.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z.W. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater. 2022, 437, 129361. [Google Scholar] [CrossRef]
- Liu, S.J.; Liu, X.Y.; Guo, J.L.; Yang, R.R.; Wang, H.W.; Sun, Y.Y.; Chen, B.; Dong, R.H. The Association between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. Environ. Sci. Technol. 2022, 12, 17774–17785. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Yang, Y.; Du, Z.; Li, L.; Zhang, M.; Ni, S.; Yue, Z.; Yang, K.; Wang, Y.; et al. Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 2024, 469, 133855. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, J.; Lin, L.; Chen, J.; Wang, L.; Deng, X.; Wu, X.; Lin, Z.; Zhang, Y.; Yu, R.; et al. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation. Environ. Int. 2023, 181, 108296. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Sathyanarayana, S.; Swan, S.H. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2097–2113. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 8. [Google Scholar] [CrossRef]
- Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Technol. 2014, 48, 12302–12311. [Google Scholar] [CrossRef]
- Lundebye, A.-K.; Lusher, A.L.; Bank, M.S. Marine Microplastics and Seafood: Implications for Food Security. In Microplastic in the Environment: Pattern and Process; Bank, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 131–153. [Google Scholar]
- Kumar, R.; Manna, C.; Padha, S.; Verma, A.; Sharma, P.; Dhar, A.; Ghosh, A.; Bhattacharya, P. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere 2022, 298, 134267. [Google Scholar] [CrossRef]
- Banerjee, A.; Billey, L.O.; McGarvey, A.M.; Shelver, W.L. Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period. Sci. Total Environ. 2022, 836, 155621. [Google Scholar] [CrossRef]
- Hasan Anik, A.; Hossain, S.; Alam, M.; Binte Sultan, M.; Hasnine, M.D.T.; Rahman, M.M. Microplastics pollution: A comprehensive review on the sources, fates, effects, and potential remediation. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100530. [Google Scholar] [CrossRef]
- Balestra, V.; Trunfio, F.; Akyildiz, S.; Marini, P.; Bellopede, R. Microparticles of anthropogenic origin (microplastics and microfibers) in sandy sediments: A case study from calabria, Italy. Environ. Monit. Assess. 2024, 196, 993. [Google Scholar] [CrossRef]
- Tasnim, J.; Ahmed, M.; Hossain, K.; Islam, M. Spatiotemporal distribution of microplastic debris in the surface beach sediment of the southeastern coast of Bangladesh. Heliyon 2023, 9, e21864. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Coley, I.; Duran-Izquierdo, M.; Rodriguez-Cavallo, E.; Mercado-Camargo, J.; Mendez-Cuadro, D.; Olivero-Verbel, J. Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Mar. Pollut. Bull. 2019, 146, 574–583. [Google Scholar] [CrossRef]
- Cai, H.; Xu, E.; Du, F.; Li, R.; Liu, J.; Shi, H. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021, 410, 128208. [Google Scholar] [CrossRef]
- Yang, T.; Nowack, B. A Meta-analysis of Ecotoxicological Hazard Data for Nanoplastics in Marine and Freshwater Systems. Environ. Toxicol. Chem. 2020, 39, 2588–2598. [Google Scholar] [CrossRef]
- Innovative Approaches Towards Prevention, Removal and Reuse of Marine Plastic Litter. Available online: https://www.innoplastic.eu/ (accessed on 8 February 2025).
- Cecchi, T.; Poletto, D.; Berbecaru, A.C.; Carstea, E.M.; Rapa, M. Assessing Microplastics and Nanoparticles in the Surface Seawater of Venice Lagoon-Part I: Methodology of Research. Materials 2024, 17, 1759. [Google Scholar] [CrossRef] [PubMed]
- Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283. [Google Scholar] [CrossRef]
- La Rocca, A.; Di Liberto, G.; Shayler, P.J.; Parmenter, C.D.J.; Fay, M.W. Application of nanoparticle tracking analysis platform for the measurement of soot-in-oil agglomerates from automotive engines. Tribol. Int. 2014, 70, 142–147. [Google Scholar] [CrossRef]
- Real Statistic Using Excel. Available online: https://www.real-statistics.com/free-download (accessed on 25 January 2025).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Available online: https://www.nhm.uio.no/english/research/resources/past/ (accessed on 25 January 2025).
- Nakatani, H.; Yuina, O.; Taishi, U.; Suguru, M.; Dao, A.T.N.; Kim, K.J.; Yagi, M.; Kyozuka, Y. Rapid Oxidative Fragmentation of Polypropylene with PH Control in Seawater for Preparation of Realistic Reference Microplastics. Sci. Rep. 2023, 13, 4247. [Google Scholar] [CrossRef]
- Rahman, A.; Rusli, A.; Abdullah, M.; Shuib, R.; Hamid, Z.; Ishak, K.; Makhtar, M.; Jaafar, M.; Shafiq, M. A review of microplastic surface interactions in water and potential capturing methods. Water Sci. Eng. 2024, 17, 361–370. [Google Scholar] [CrossRef]
- Morici, E.; Cammilleri, G.; Scire, S.; Bonomo, F.P.; Tranchina, L.; Terracina, F.; Galluzzo, P.; Ferrantelli, V.; Monteverde, V.P.; Galluzzo, F.G.; et al. Survey on the presence of floating microplastics, trace metals and metalloids in seawater from Southern Italy to the United States of America. Ecotoxicol. Environ. Saf. 2025, 290, 117507. [Google Scholar] [CrossRef]
- Lv, S.; Wang, Q.; Li, Y.; Gu, L.; Hu, R.; Chen, Z.; Shao, Z. Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics. Sci. Total Environ. 2024, 948, 174857. [Google Scholar] [CrossRef] [PubMed]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.F.; do Carmo, D.d.F.; Muniz, M.C.; dos Santos, C.A.; Issa Cardozo, B.B.; de Oliveira Costa, D.M.; dos Anjos, R.M.; Vezzone, M. Evaluation of microplastic and marine debris on the beaches of Niteroi Oceanic Region, Rio De Janeiro, Brazil. Mar. Pollut. Bull. 2022, 175, 113161. [Google Scholar] [CrossRef]
- Agamuthu, P.; Mehran, S.B.; Norkhairah, A.; Norkhairiyah, A. Marine debris: A review of impacts and global initiatives. Waste Manag. Res. 2019, 37, 987–1002. [Google Scholar] [CrossRef]
- Kosić, D. Yearly Report 2024, Ponikve Eko Otok Krk. Available online: https://www.ponikve.hr/dokumenti/godisnji-izvjestaji (accessed on 21 February 2025).
- Consoli, P.; Falautano, M.; Sinopoli, M.; Perzia, P.; Canese, S.; Esposito, V.; Battaglia, P.; Romeo, T.; Andaloro, F.; Galgani, F.; et al. Composition and abundance of benthic marine litter in a coastal area of the central Mediterranean Sea. Mar. Pollut. Bull. 2018, 136, 243–247. [Google Scholar] [CrossRef]
- Capriotti, M.; Cocci, P.; Bracchetti, L.; Cottone, E.; Scandiffio, R.; Caprioli, G.; Sagratini, G.; Mosconi, G.; Bovolin, P.; Palermo, F. Microplastics and their associated organic pollutants from the coastal waters of the central Adriatic Sea (Italy): Investigation of adipogenic effects in vitro. Chemosphere 2021, 263, 128090. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Cozzarini, L.; Zambello, E. A critical review on marine litter in the Adriatic Sea: Focus on plastic pollution. Environ. Pollut. 2021, 273, 116430. [Google Scholar] [CrossRef]
- Zuo, Y.; Ge, Y.; Wang, R.; Xu, W.; Liu, C.; Guo, Z.; Wang, S.; Jia, H.; Li, Y. Occurrence and migration patterns of microplastics in different tidal zones of tourist beaches: A case study in the Bohai Bay, North China. J. Environ. Manag. 2024, 370, 122479. [Google Scholar] [CrossRef]
- Trani, A.; Mezzapesa, G.; Piscitelli, L.; Mondelli, D.; Nardelli, L.; Belmonte, G.; Toso, A.; Piraino, S.; Panti, C.; Baini, M.; et al. Microplastics in water surface and in the gastrointestinal tract of target marine organisms in Salento coastal seas (Italy, Southern Puglia). Environ. Pollut. 2023, 316, 120702. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ye, K.; Lu, Y.; Deng, H.; Yang, J.; Li, K.; Liu, L.; Zheng, H.; Sun, K.; Jiang, Y. Occurrence and risk assessment of microplastics on the Shenzhen coast, South China. Ecotoxicol. Environ. Saf. 2024, 286, 117227. [Google Scholar] [CrossRef]
- Hossain, M.; Saifullah, A.; Uddin, M.; Rahaman, M. Assessment of microplastics in coastal ecosystem of Bangladesh. Ecotoxicol. Environ. Saf. 2024, 281, 116622. [Google Scholar] [CrossRef]
- Ronda, A.; Menédez, M.; Tombesi, N.; Alvarez, M.; Tomba, J.; Silva, L.; Arias, A. Microplastic levels on sandy beaches: Are the effects of tourism and coastal recreation really important? Chemosphere 2023, 316, 137842. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Delandmeter, P.; van Sebille, E. Influence of Near-Surface Currents on the Global Dispersal of Marine Microplastic. J. Geophys. Res. Ocean. 2019, 124, 6086–6096. [Google Scholar] [CrossRef]
- Whitaker, J.M.; Garza, T.N.; Janosik, A.M. Sampling with Niskin bottles and microfiltration reveals a high prevalence of microfibers. Limnologica 2019, 78, 125711. [Google Scholar] [CrossRef]
- Zhou, Z.; Wan, L.; Cai, W.Q.; Tang, J.; Wu, Z.J.; Zhang, K.D. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in-situ study at the Xisha Islands. Sci. Total Environ. 2022, 815, 152845. [Google Scholar] [CrossRef]
- Andersen, R.; Harsaae, A.; Kellner, A.; Smyth, A.; Westermann, T.; Green, M.; Vollertsen, J.; Syberg, K.; Lorenz, C. Abundance, distribution and characteristics of microplastics in the North and South Atlantic Ocean. Mar. Pollut. Bull. 2024, 209, 117217. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment- From marine to food systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, W.; Zheng, L.; Li, T.; Hai, C.; Wang, Y.; Lyu, T. A review of the migration mechanisms of microplastics in terrestrial environments. Environ. Eng. Res. 2024, 29, 230734. [Google Scholar] [CrossRef]
- Enfrin, M.; Lee, J.; Gibert, Y.; Basheer, F.; Kong, L.; Dumée, L. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 2020, 384, 121393. [Google Scholar] [CrossRef]
- Hebner, T.; Maurer-Jones, M. Characterizing microplastic size and morphology of photodegraded polymers placed in simulated moving water conditions. Environ. Sci. Process. Impacts 2020, 22, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Archodoulaki, V.-M.; Pomakhina, E.; Pukanszky, B.; Zinoecker, E.; Gahleitner, M. Environmental degradation and formation of secondary microplastics from packaging material: A polypropylene film case study. Polym. Degrad. Stab. 2022, 195, 109794. [Google Scholar] [CrossRef]
- Julienne, F.; Delorme, N.; Lagarde, F. From macroplastics to microplastics: Role of water in the fragmentation of polyethylene. Chemosphere 2019, 236, 124409. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.L.; Xiang, H.; Xiong, H.Q.; Fang, Y.C.; Wang, Y. Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. Sci. Total Environ. 2023, 863, 160953. [Google Scholar] [CrossRef]
- Qin, J.; Zeng, S.; Wang, X.; Lin, C. Generation of micro(nano)plastics and migration of plastic additives from Poly(vinyl chloride) in water under radiation-free ambient conditions. Chemosphere 2022, 299, 134399. [Google Scholar] [CrossRef]
- Zhang, K.; Hamidian, A.; Tubic, A.; Zhang, Y.; Fang, J.; Wu, C.; Lam, P. Understanding plastic degradation and microplastic formation in the environment: A review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef]
- Tuuri, E.M.; Leterme, S.C. How plastic debris and associated chemicals impact the marine food web: A review*. Environ. Pollut. 2023, 321, 121156. [Google Scholar] [CrossRef]
- Narwal, N.; Kakakhel, M.; Katyal, D.; Yadav, S.; Rose, P.; Rene, E.; Rakib, M.; Khoo, K.; Kataria, N. Interactions Between Microplastic and Heavy Metals in the Aquatic Environment: Implications for Toxicity and Mitigation Strategies. Water Air Soil Pollut. 2024, 235, 567. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Z.; Wu, J.; Su, M.; Zheng, L.; Xie, M.; Hong, H.; Huang, X.; Lu, H. High salinity restrains microplastic transport and increases the risk of pollution in coastal wetlands. Water Res. 2024, 267, 122463. [Google Scholar] [CrossRef]
Risika/Melska | Krk/Črnika | Omišalj/rt Šilo | Stara Baška/Zala | |||||
---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
TDS, g/L | 32.56 ± 1.17 | 32.23 ± 0.15 | 34.96 ± 0.32 | 33.63 ± 0.15 | 34.8 ± 0.43 | 33.13 ± 0.11 | 34.53 ± 0.20 | 33.56 ± 0.05 |
EC, mS/cm | 51.73 ± 0.55 | 51.86 ± 0.15 | 55.9 ± 0.26 | 53.93 ± 0.23 | 55.56 ± 0.75 | 53.13 ± 0.05 | 55.13 ± 0.37 | 53.80 ± 0 |
pH | 7.90 ± 0.01 | 8.43 ± 0.05 | 8.06 ± 0.009 | 8.43 ± 0.05 | 8.12 ± 0.01 | 8.4 ± 0 | 8.11 ± 0.009 | 8.4 ± 0 |
SAL, ‰ | 33.73 ± 0.30 | 34.2 ± 0.3 | 36.86 ± 0.25 | 35.80 ± 0.20 | 36.93 ± 0.20 | 34.16 ± 1.79 | 36.43 ± 0.20 | 35.56 ± 0.11 |
Cl−, g/L | 24.43 ± 0.58 | 23.42 ± 0.21 | 22.79 ± 0.75 | 23.67 ± 0.21 | 23.55 ± 0.37 | 23.55 ± 0 | 23.29 ± 0.58 | 24.61 ± 0.50 |
Percentage of Variance | |||||||
---|---|---|---|---|---|---|---|
34.90% | 21.80% | 17.40% | 14.80% | ||||
Factor | |||||||
F1 | F2 | F3 | F4 | ||||
Component | Loading | Component | Loading | Component | Loading | Component | Loading |
EC | 0.96 | Mean size | 0.86 | Red | 1.01 | Concentration | 0.92 |
Salinity | 0.96 | pH | 0.61 | Blue | 0.57 | Colorless | 0.76 |
TDS | 0.95 | Yellow | −1.02 | Black | −0.91 | Brown | −0.65 |
Fragment | 0.75 | Abundance | −0.78 | Filament | −0.62 | ||
Blue | 0.55 | ||||||
Filament | −0.67 | ||||||
Cl | −0.63 | ||||||
Brown | −0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Râpă, M.; Matei, E.; Cârstea, E.M.; Popa, C.L.; Matić, M.; Kosić, D. Unraveling the Plastic Pollution in the Aquatic Environment of the Croatian Krk Island. Water 2025, 17, 785. https://doi.org/10.3390/w17060785
Râpă M, Matei E, Cârstea EM, Popa CL, Matić M, Kosić D. Unraveling the Plastic Pollution in the Aquatic Environment of the Croatian Krk Island. Water. 2025; 17(6):785. https://doi.org/10.3390/w17060785
Chicago/Turabian StyleRâpă, Maria, Ecaterina Matei, Elfrida Mihaela Cârstea, Cristina Liana Popa, Marta Matić, and Dejan Kosić. 2025. "Unraveling the Plastic Pollution in the Aquatic Environment of the Croatian Krk Island" Water 17, no. 6: 785. https://doi.org/10.3390/w17060785
APA StyleRâpă, M., Matei, E., Cârstea, E. M., Popa, C. L., Matić, M., & Kosić, D. (2025). Unraveling the Plastic Pollution in the Aquatic Environment of the Croatian Krk Island. Water, 17(6), 785. https://doi.org/10.3390/w17060785