Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZeoPhos
2.2. Characterization Analysis
2.3. Phosphate and Ammonium Kinetic Experiments Procedure
2.4. Phosphate and Ammonium Adsorption Experiment Procedure
2.5. Adsorption Kinetic Models Evaluated
2.6. Adsorption Isotherm Models Evaluated
3. Results and Discussions
3.1. Characterization Analysis Results
3.2. Adsorption Kinetic Results
3.3. Removal Efficiency Results
3.4. Adsorption Isotherm Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Beusen, A.H.W.; Doelman, J.C.; Van Beek, L.P.H.; Van Puijenbroek, P.J.T.M.; Mogollón, J.M.; Van Grinsven, H.J.M.; Stehfest, E.; Van Vuuren, D.P.; Bouwman, A.F. Exploring River Nitrogen and Phosphorus Loading and Export to Global Coastal Waters in the Shared Socio-Economic Pathways. Glob. Environ. Chang. 2022, 72, 102426. [Google Scholar] [CrossRef]
- Chanda, R.; Islam, M.S.; Biswas, B.K. N and P Removal from Wastewater Using Rice Husk Ash-Derived Silica-Based Fe-ZSM-5 Zeolite. Clean. Eng. Technol. 2023, 16, 100675. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.-Z.; Chen, D. Adsorbent Materials for Ammonium and Ammonia Removal: A Review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, L.; Shi, M.; Gu, C.; Zhang, J.; Lv, J.; Xuan, L. Ca/Fe-Layered Double Hydroxide–Zeolite Composites for the Control of Phosphorus Pollution in Sediments: Performance, Mechanisms, and Microbial Community Response. Chem. Eng. J. 2022, 450, 138277. [Google Scholar] [CrossRef]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, T.; Szőri-Dorogházi, E.; Muránszky, G.; Kecskés, K.; Finšgar, M.; Szabó, T.; Leskó, M.; Németh, Z.; Hernadi, K. Application of Modified Clays in the Removal of Phosphates and E. Coli from Aqueous Solution. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100965. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Xu, Z.; Yang, Z. Lake Recovery from Eutrophication: Quantitative Response of Trophic States to Anthropogenic Influences. Ecol. Eng. 2020, 143, 105697. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Q.; Liu, Q.; Fu, G. Lake Eutrophication Recovery Trajectories: Some Recent Findings and Challenges Ahead. Ecol. Indic. 2020, 110, 105878. [Google Scholar] [CrossRef]
- Biliani, I.; Tsavatopoulou, V.; Zacharias, I. Comparative Study of Ammonium and Orthophosphate Removal Efficiency with Natural and Modified Clay-Based Materials, for Sustainable Management of Eutrophic Water Bodies. Sustainability 2024, 16, 10214. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L.; Zamparas, M.; Kapsalis, V.C.; Kalavrouziotis, I.K. Eutrophication Control: The Shift to Invasive Methods Managing the Internal Nutrient Loads. A Bibliometric Analysis. Desalin. Water Treat. 2022, 267, 177–185. [Google Scholar] [CrossRef]
- Jilbert, T.; Couture, R.M.; Huser, B.J.; Salonen, K. Preface: Restoration of Eutrophic Lakes: Current Practices and Future Challenges. Hydrobiologia 2020, 847, 4343–4357. [Google Scholar] [CrossRef]
- Baxa, M.; Musil, M.; Kummel, M.; Hanzlík, P.; Tesařová, B.; Pechar, L. Dissolved Oxygen Deficits in a Shallow Eutrophic Aquatic Ecosystem (Fishpond)—Sediment Oxygen Demand and Water Column Respiration Alternately Drive the Oxygen Regime. Sci. Total Environ. 2021, 766, 142647. [Google Scholar] [CrossRef]
- Shaheen, U.; Ye, Z.L.; Abass, O.K.; Zamel, D.; Rehman, A.; Zhao, P.; Huang, F. Evaluation of Potential Adsorbents for Simultaneous Adsorption of Phosphate and Ammonium at Low Concentrations. Microporous Mesoporous Mater. 2024, 379, 113301. [Google Scholar] [CrossRef]
- Wen, J.; Yi, Y.; Zeng, G. Effects of Modified Zeolite on the Removal and Stabilization of Heavy Metals in Contaminated Lake Sediment Using BCR Sequential Extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef]
- Ayele, L.; Pérez-Pariente, J.; Chebude, Y.; Díaz, I. Conventional versus Alkali Fusion Synthesis of Zeolite A from Low Grade Kaolin. Appl. Clay Sci. 2016, 132–133, 485–490. [Google Scholar] [CrossRef]
- Putra, R.N.; Lee, Y.H. Entrapment of Micro-Sized Zeolites in Porous Hydrogels: Strategy to Overcome Drawbacks of Zeolite Particles and Beads for Adsorption of Ammonium Ions. Sep. Purif. Technol. 2020, 237, 116351. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Dai, H.; Lu, X.; Peng, L.; Tan, X.; Shi, L.; Fahim, R. Preparation and Application of Modified Zeolites as Adsorbents in Wastewater Treatment. Water Sci. Technol. 2017, 2017, 621–635. [Google Scholar] [CrossRef]
- Biliani, S.E.; Manariotis, I.D. Wastewater Treatment by High Density Algal Flocs for Nutrient Removal and Biomass Production. J. Appl. Phycol. 2023, 35, 1237–1250. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Cao, G.; Wang, D.; Ho, S.H. A Sustainable Solution to Plastics Pollution: An Eco-Friendly Bioplastic Film Production from High-Salt Contained Spirulina sp. Residues. J. Hazard. Mater. 2019, 388, 121773. [Google Scholar] [CrossRef] [PubMed]
- APHA. Method 4500-P E: Phosphorus (Orthophosphate) by Ascorbic Acid Method. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; pp. 4.113–4.116. [Google Scholar]
- Ho, Y.S. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Jiménez-Cedillo, M.J.; Olguín, M.T.; Fall, C. Adsorption Kinetic of Arsenates as Water Pollutant on Iron, Manganese and Iron-Manganese-Modified Clinoptilolite-Rich Tuffs. J. Hazard. Mater. 2009, 163, 939–945. [Google Scholar] [CrossRef]
- Low, M.J.D. Kinetics of Chemisorption of Gases on Solids. Chem. Rev. 1960, 60, 267–312. [Google Scholar] [CrossRef]
- Weber, W.; Morris, C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Salvestrini, S.; Debord, J.; Bollinger, J.C. Enhanced Sorption Performance of Natural Zeolites Modified with PH-Fractionated Humic Acids for the Removal of Methylene Blue from Water. Molecules 2023, 28, 7083. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Etemadinia, T.; Rezaei, O.M.; Mehrpour, O.; Mousavi, S.J.; Sadeghi, M. Application of Polypyrrole Coated on Perlite Zeolite for Removal of Nitrate from Wood and Paper Factories Wastewater. Desalin. Water Treat. 2018, 124, 177–183. [Google Scholar] [CrossRef]
- Georgiev, D.; Bogdanov, B.; Hristov, Y.; Markovska, I. Second-Order Kinetic Model for the Sorption of Cu(II) Ions in Aqueous Solutions of Zeolite NaA. Adv. Mater. Res. 2012, 560–561, 1174–1177. [Google Scholar] [CrossRef]
- Cheng, Z.; Ding, W. Ammonium Removal from Water by Natural and Modified Zeolite: Kinetic, Equilibrium, and Thermodynamic Studies. Desalin. Water Treat. 2015, 55, 978–985. [Google Scholar] [CrossRef]
- Liang, Z.; Gao, Q.; Wu, Z.; Gao, H. Removal and Kinetics of Cadmium and Copper Ion Adsorption in Aqueous Solution by Zeolite NaX Synthesized from Coal Gangue. Environ. Sci. Pollut. Res. 2022, 29, 84651–84660. [Google Scholar] [CrossRef] [PubMed]
- Biliani, S.E.; Vakros, J.; Manariotis, I.D. Screening of Raw and Modified Biochars from Food Processing Wastes for the Removal of Phosphates, Nitrates, and Ammonia from Water. Sustainability 2022, 14, 16483. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhang, C.; Hjorth, R.; Baun, A.; Duckworth, O.W.; Call, D.F.; Knappe, D.R.U.; Jones, J.L.; Grieger, K. Emerging Lanthanum (III)-Containing Materials for Phosphate Removal from Water: A Review towards Future Developments. Environ. Int. 2020, 145, 106115. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Tong, J.; Yang, Z.; Zeng, G.; Zhou, Y.; Wang, D.; Song, P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of Phosphate from Aqueous Solution Using Iron-Zirconium Modified Activated Carbon Nanofiber: Performance and Mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. [Google Scholar] [CrossRef]
- Ashfaq, M.H.; Shahid, S.; Javed, M.; Iqbal, S.; Hakami, O.; Aljazzar, S.O.; Fatima, U.; Elkaeed, E.B.; Pashameah, R.A.; Alzahrani, E.; et al. Controlled Growth of TiO2/Zeolite Nanocomposites for Simultaneous Removal of Ammonium and Phosphate Ions to Prevent Eutrophication. Front. Mater. 2022, 9, 1007485. [Google Scholar] [CrossRef]
- Huang, X.; Wang, N.; Kang, Z.; Yang, X.; Pan, M. An Investigation into the Adsorption of Ammonium by Zeolite-Magnetite Composites. Minerals 2022, 12, 256. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Abukhadra, M.R.; Ali, S.M.; Ali, S.M.; Nasr, E.A.; Nasr, E.A.; Mahmoud, H.A.A.; Mahmoud, H.A.A.; Awwad, E.M. Effective Sequestration of Phosphate and Ammonium Ions by the Bentonite/Zeolite Na-P Composite as a Simple Technique to Control the Eutrophication Phenomenon: Realistic Studies. ACS Omega 2020, 5, 14656–14668. [Google Scholar] [CrossRef]
Model | Linearized Form of the Kinetic Model |
---|---|
Pseudo-First-Order | |
Pseudo-Second-Order | |
Elovich | |
Weber–Morris | |
Element | Natural Zeolite Weight % | Natural Zeolite Atomic % | ZeoPhos Weight % | ZeoPhos Atomic % |
---|---|---|---|---|
C (carbon) | 17.82% | 25.83% | 11.89% | 17.17% |
O (oxygen) | 51.09% | 55.61% | 62.37% | 67.62% |
Na (sodium) | 0.31% | 0.23% | — | — |
Mg (magnesium) | 0.25% | 0.18% | 0.21% | 0.15% |
Al (aluminum) | 3.39% | 2.19% | 3.98% | 2.56% |
Si (silicon) | 23.65% | 14.66% | 18.46% | 11.40% |
K (potassium) | 0.91% | 0.41% | 0.34% | 0.15% |
Ca (calcium) | 0.92% | 0.40% | 0.83% | 0.36% |
Fe (iron) | 0.95% | 0.29% | 1.69% | 0.53% |
Cu (copper) | 0.72% | 0.20% | 0.24% | 0.06% |
Spot# | Natural Zeolite d-Spacing (nm) | Natural Zeolite Amplitude | ZeoPhos d-Spacing (nm) | ZeoPhos Amplitude |
---|---|---|---|---|
1 | 0.4229 | 798 | 0.4221 | 1069 |
2 | 0.3956 | 792 | 0.3429 | 602 |
3 | 0.2894 | 874 | 0.2623 | 472 |
4 | 0.2525 | 580 | 0.209 | 291 |
5 | 0.2172 | 295 | 0.1638 | 221 |
6 | 0.1649 | 238 | 0.1525 | 277 |
7 | 0.1509 | 188 | 0.1387 | 212 |
8 | 0.1383 | 259 | 0.1277 | 183 |
9 | 0.1252 | 185 | 0.09647 | 124 |
10 | 0.1231 | 160 | ||
11 | 0.09807 | 121 |
Kinetic Model | Parameter | Natural Zeolite | ZeoPhos |
---|---|---|---|
Pseudo-first-order | ksi (min−1) | 0.0007 | 0.0006 |
qe (mg/g) | 4.44 | 4.28 | |
R2 | 0.63 | 0.62 | |
Pseudo-second-order | qe (mg/g) | 8.43 | 8.16 |
k2 (g/mg × min) | 0.0013 | 0.0012 | |
R2 | 0.99 | 0.99 | |
Elovich | α (mg/g × min) | 0.0023 | 0.0022 |
β (g/mg) | 0.317 | 0.326 | |
R2 | 0.61 | 0.60 |
Kinetic Model | Parameter | Natural Zeolite | ZeoPhos |
---|---|---|---|
Pseudo-first-order | ksi (min−1) | 0.0004 | 0.0005 |
qe (mg/g) | 2.33 | 3.08 | |
R2 | 0.42 | 0.44 | |
Pseudo-second-order | qe (mg/g) | 5.41 | 7.17 |
k2 (g/mg × min) | 0.0033 | 0.0022 | |
R2 | 0.99 | 0.99 | |
Elovich | α (mg/g × min) | 0.0012 | 0.0017 |
β (g/mg) | 0.367 | 0.304 | |
R2 | 0.50 | 0.46 |
NH4+ Results | Parameter | Natural Zeolite | ZeoPhos |
---|---|---|---|
0 < t0.5 < 26.83 | ki (mg/g × min−1/2) | 0.2559 | 0.2522 |
c (mg/g) | 0.73 | 0.69 | |
R2 | 0.99 | 0.99 | |
26.83 < t0.5 < 53.63 | ki (mg/g × min−1/2) | 0.0155 | 0.0128 |
c (mg/g) | 7.34 | 7.21 | |
R2 | 0.64 | 0.69 | |
PO43+ results | Parameter | Natural Zeolite | ZeoPhos |
0 < t0.5 < 10.95 | ki (mg/g × min−1/2) | 0.2725 | 0.3799 |
c (mg/g) | 0.62 | 0.18 | |
R2 | 0.97 | 0.92 | |
10.95 < t0.5 < 26.83 | ki (mg/g × min−1/2) | 0.0947 | 0.1136 |
c (mg/g) | 2.43 | 3.61 | |
R2 | 0.92 | 0.92 | |
26.83 < t0.5 < 53.63 | ki (mg/g × min−1/2) | 0.01859 | 0.0121 |
c (mg/g) | 4.38 | 6.40 | |
R2 | 0.88 | 0.87 |
Results | Parameter | Natural Zeolite | ZeoPhos |
---|---|---|---|
NH4+ results | kL (L/mg) | 0.0006 | 0.0015 |
Qm (mg/g) | 34.3 | 28.61 | |
R2 | 0.99 | 0.99 | |
PO43+ results | kL (L/mg) | 0.4622 | 0.1571 |
Qm (mg/g) | 13.06 | 27.13 | |
R2 | 0.98 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliani, I.; Zacharias, I. Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters. Water 2025, 17, 786. https://doi.org/10.3390/w17060786
Biliani I, Zacharias I. Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters. Water. 2025; 17(6):786. https://doi.org/10.3390/w17060786
Chicago/Turabian StyleBiliani, Irene, and Ierotheos Zacharias. 2025. "Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters" Water 17, no. 6: 786. https://doi.org/10.3390/w17060786
APA StyleBiliani, I., & Zacharias, I. (2025). Synthesis of a Novel Modified Zeolite (ZeoPhos) for the Adsorption of Ammonium and Orthophosphate Ions from Eutrophic Waters. Water, 17(6), 786. https://doi.org/10.3390/w17060786