Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Rainfall Data
2.2.2. Sea Surface Temperature Data
2.3. Methods
2.3.1. Maximum Covariance Analysis
2.3.2. Savitzky–Golay Filter
2.3.3. Moving Correlation
3. Results
3.1. Rainfall Variability in the ORB
3.2. Coupled SST-Rainfall Patterns
3.3. Relationships Between Rainfall in the ORB and SST in Tropical Oceans
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMM | Atlantic Meridional Mode |
AMOC | Atlantic Meridional Overturning Circulation |
ENSO | El Nino Southern Oscillation |
EOF | Empirical Orthogonal Function |
EOT | Empirical Orthogonal Teleconnection |
IDM | Indian Dipole Mode |
IOD | Indian Ocean Dipole |
MCA | Maximum Covariance Analysis |
MSWEP | Multi-Source Weighted-Ensemble Precipitation |
ORB | Ogooué River Basin |
PC | Principal component |
PCA | Principal Component Analysis |
SCF | Squared Covariance Fraction |
SST | Sea Surface Temperature |
SVD | Singular Value Decomposition |
TEC | Time Expansion Coefficient |
References
- Lau, K.-M.; Lim, H. On the Dynamics of Equatorial Forcing of Climate Teleconnections. J. Atmos. Sci. 1984, 41, 161–176. [Google Scholar] [CrossRef]
- Burnett, A. Teleconnections. In Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 707–711. ISBN 9781402032660. [Google Scholar]
- An, S.-I.; Wang, C.; Mechoso, C.R. Teleconnections in the Atmosphere. In Interacting Climates of Ocean Basins: Observations, Mechanisms, Predictability, and Impacts; Cambridge University Press: Cambridge, UK, 2020; pp. 54–88. [Google Scholar]
- Van den Dool, H.M.; Saha, S.; Johansson, Å. Empirical Orthogonal Teleconnections. J. Clim. 2000, 13, 1421–1435. [Google Scholar] [CrossRef]
- Amirudin, A.A.; Salimun, E.; Tangang, F.; Juneng, L.; Zuhairi, M. Differential Influences of Teleconnections from the Indian and Pacific Oceans on Rainfall Variability in Southeast Asia. Atmosphere 2020, 11, 886. [Google Scholar] [CrossRef]
- Eabry, M.D.; Taschetto, A.S.; Maharaj, A.M.; Sen Gupta, A. What Determines the Lagged ENSO Response in the South-west Indian Ocean? Geophys. Res. Lett. 2021, 48, e2020GL091958. [Google Scholar] [CrossRef]
- Farnsworth, A.; White, E.; Williams, C.J.R.; Black, E.; Kniveton, D.R. Understanding the Large Scale Driving Mechanisms of Rainfall Variability over Central Africa. In African Climate and Climate Change: Physical, Social and Political Perspectives; Williams, C.J.R., Kniveton, D.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 101–122. ISBN 9789048138425. [Google Scholar]
- Adarsh, S.; Janga Reddy, M. Links Between Global Climate Teleconnections and Indian Monsoon Rainfall. In Climate Change Signals and Response: A Strategic Knowledge Compendium for India; Venkataraman, C., Mishra, T., Ghosh, S., Karmakar, S., Eds.; Springer: Singapore, 2019; pp. 61–72. ISBN 9789811302800. [Google Scholar]
- Cardil, A.; Rodrigues, M.; Tapia, M.; Barbero, R.; Ramírez, J.; Stoof, C.R.; Silva, C.A.; Mohan, M.; de-Miguel, S. Climate Teleconnections Modulate Global Burned Area. Nat. Commun. 2023, 14, 427. [Google Scholar] [CrossRef]
- Alizadeh, O. A Review of ENSO Teleconnections at Present and under Future Global Warming. Wiley Interdiscip. Rev. Clim. Change 2024, 15, e861. [Google Scholar] [CrossRef]
- Beniche, M.; Vialard, J.; Lengaigne, M.; Voldoire, A.; Srinivas, G.; Hall, N.M.J. A Distinct and Reproducible Teleconnection Pattern over North America during Extreme El Niño Events. Sci. Rep. 2024, 14, 2457. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing Influence of Indian Ocean Dipole on Precipitation over Central Equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [Google Scholar] [CrossRef]
- Bogning, S.; Frappart, F.; Mahé, G.; Paris, A.; Onguene, R.; Blarel, F.; Niño, F.; Etame, J.; Braun, J.-J. Investigating Links between Rainfall Variations in the Ogooué River Basin and ENSO in the Pacific Ocean over the Period 1940–1999. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 181–186. [Google Scholar] [CrossRef]
- Silva, F.N.; Vega-Oliveros, D.A.; Yan, X.; Flammini, A.; Menczer, F.; Radicchi, F.; Kravitz, B.; Fortunato, S. Detecting Climate Teleconnections with Granger Causality. Geophys. Res. Lett. 2021, 48, e2021GL094707. [Google Scholar] [CrossRef]
- Döös, K.; Kjellsson, J.; Zika, J.; Laliberté, F.; Brodeau, L.; Campino, A.A. The Coupled Ocean–Atmosphere Hydrothermohaline Circulation. J. Clim. 2017, 30, 631–647. [Google Scholar] [CrossRef]
- Trenberth, K.E. Poleward Heat Transports by the Atmosphere and Ocean. In The Changing Flow of Energy Through the Climate System; Cambridge University Press: Cambridge, UK, 2022; pp. 121–139. [Google Scholar]
- Tsonis, A.A.; Swanson, K.L.; Wang, G. On the Role of Atmospheric Teleconnections in Climate. J. Clim. 2008, 21, 2990–3001. [Google Scholar] [CrossRef]
- Bonner, S.J.; Newlands, N.K.; Heckman, N.E. Modeling Regional Impacts of Climate Teleconnections Using Functional Data Analysis. Environ. Ecol. Stat. 2014, 21, 1–26. [Google Scholar] [CrossRef]
- Liu, T.; Chen, D.; Yang, L.; Meng, J.; Wang, Z.; Ludescher, J.; Fan, J.; Yang, S.; Chen, D.; Kurths, J.; et al. Teleconnections among Tipping Elements in the Earth System. Nat. Clim. Change 2023, 13, 67–74. [Google Scholar] [CrossRef]
- Rezaei, A.; Karami, K.; Tilmes, S.; Moore, J.C. Changes in Global Teleconnection Patterns under Global Warming and Stratospheric Aerosol Intervention Scenarios. Atmos. Chem. Phys. 2023, 23, 5835–5850. [Google Scholar] [CrossRef]
- Hausfather, Z.; Marvel, K.; Schmidt, G.A.; Nielsen-Gammon, J.W.; Zelinka, M. Climate Simulations: Recognize the “Hot Model” Problem. Nature 2022, 605, 26–29. [Google Scholar] [CrossRef]
- Schmidt, G. Climate Models Can’t Explain 2023’s Huge Heat Anomaly—We Could Be in Uncharted Territory. Nature 2024, 627, 467. [Google Scholar] [CrossRef]
- Gutiérrez, O.; Panario, D.; Nagy, G.J.; Bidegain, M.; Montes, C. Climate Teleconnections and Indicators of Coastal Systems Response. Ocean Coast. Manag. 2016, 122, 64–76. [Google Scholar] [CrossRef]
- Steptoe, H.; Jones, S.E.O.; Fox, H. Correlations between Extreme Atmospheric Hazards and Global Teleconnections: Implications for Multihazard Resilience. Rev. Geophys. 2018, 56, 50–78. [Google Scholar] [CrossRef]
- Abtew, W.; Melesse, A.M. Climate Teleconnections and Water Management. In Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Melesse, A.M., Abtew, W., Setegn, S.G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 685–705. ISBN 9783319027203. [Google Scholar]
- Craig, P.M.; Allan, R.P. The Role of Teleconnection Patterns in the Variability and Trends of Growing Season Indices across Europe. Int. J. Climatol. 2022, 42, 1072–1091. [Google Scholar] [CrossRef]
- Alsdorf, D.; Beighley, E.; Laraque, A.; Lee, H.; Tshimanga, R.; O’Loughlin, F.; Mahé, G.; Dinga, B.; Moukandi, G.; Spencer, R.G.M. Opportunities for Hydrologic Research in the Congo Basin. Rev. Geophys. 2016, 54, 378–409. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African Continent from the 19th through the 21st Century. Glob. Planet. Change 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Balas, N.; Nicholson, S.E.; Klotter, D. The Relationship of Rainfall Variability in West Central Africa to Sea-Surface Temperature Fluctuations. Int. J. Climatol. 2007, 27, 1335–1349. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Nicholson, S.E. The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part II: The Boreal Autumn. J. Clim. 2013, 26, 66–84. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Dezfuli, A.K. The Relationship of Rainfall Variability in Western Equatorial Africa to the Tropical Oceans and Atmospheric Circulation. Part I: The Boreal Spring. J. Clim. 2013, 26, 45–65. [Google Scholar] [CrossRef]
- Longandjo, G.-N.; Rouault, M. Revisiting the Seasonal Cycle of Rainfall over Central Africa. J. Clim. 2024, 37, 1015–1032. [Google Scholar] [CrossRef]
- Balas, N. Climatic Variability in Central Africa and Its Link to Sea Surface Temperature and the El Nino/la Nina. 2003. Available online: https://repository.lib.fsu.edu/islandora/object/fsu:169208 (accessed on 27 February 2025).
- Moihamette, F.; Pokam, W.M.; Diallo, I.; Washington, R. Extreme Indian Ocean Dipole and Rainfall Variability over Central Africa. Int. J. Climatol. 2022, 42, 5255–5272. [Google Scholar] [CrossRef]
- Moihamette, F.; Pokam, W.M.; Diallo, I.; Washington, R. Response of Regional Circulation Features to the Indian Ocean Dipole and Influence on Central Africa Climate. Clim. Dyn. 2024, 62, 1–21. [Google Scholar] [CrossRef]
- Lüdecke, H.-J.; Müller-Plath, G.; Wallace, M.G.; Lüning, S. Decadal and Multidecadal Natural Variability of African Rainfall. J. Hydrol. Reg. Stud. 2021, 34, 100795. [Google Scholar] [CrossRef]
- Ebodé, V.B. Analysis of the Spatio-Temporal Rainfall Variability in Cameroon over the Period 1950 to 2019. Atmosphere 2022, 13, 1769. [Google Scholar] [CrossRef]
- Wamba Tchinda, C.; Tchakoutio Sandjon, A.; Djiotang Tchotchou, A.L.; Nzeudeu Siwe, A.; Vondou, D.A.; Nzeukou, A. The Influence of Intraseasonal Oscillations on Rainfall Variability over Central Africa: Case of the 25–70 Days Variability. Sci. Rep. 2023, 13, 19842. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, A.; Xia, G.; Zhou, L.; Jiang, Y. Orographic Enhancement of Rainfall over the Congo Basin. Atmos. Sci. Lett. 2022, 23, e1079. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular Value Decomposition of Wintertime Sea Surface Temperature and 500-Mb Height Anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Cherry, S. Singular Value Decomposition Analysis and Canonical Correlation Analysis. J. Clim. 1996, 9, 2003–2009. [Google Scholar] [CrossRef]
- Cherry, S. Some Comments on Singular Value Decomposition Analysis. J. Clim. 1997, 10, 1759–1761. [Google Scholar] [CrossRef]
- Mignard, S.L.-A.; Mulder, T.; Martinez, P.; Charlier, K.; Rossignol, L.; Garlan, T. Deep-Sea Terrigenous Organic Carbon Transfer and Accumulation: Impact of Sea-Level Variations and Sedimentation Processes off the Ogooue River (Gabon). Mar. Pet. Geol. 2017, 85, 35–53. [Google Scholar] [CrossRef]
- Mahé, G.; Lerique, J.; Olivry, J.-C. Le Fleuve Ogooué au Gabon: Reconstitution des Débits Manquants et Mise en Évidence de Variations Climatiques à L’Équateur. 1990. Available online: https://agris.fao.org/search/en/providers/122415/records/647368a92c1d629bc9805563 (accessed on 27 February 2025).
- Bogning, S.; Frappart, F.; Mahé, G.; Niño, F.; Paris, A.; Sihon, J.; Ghomsi, F.; Blarel, F.; Bricquet, J.-P.; Onguene, R.; et al. Long-term Hydrological Variations of the Ogooué River Basin. In Congo Basin Hydrology, Climate, and Biogeochemistry; Wiley: Hoboken, NJ, USA, 2022; pp. 367–389. [Google Scholar]
- Bedigian, D. Gamba, Gabon: Biodiversité D’une Forêt équatoriale Africane [Gamba, Gamboa: Biodiversity of an Equatorial African Rainforest. Econ. Bot. 2007, 61, 104. [Google Scholar]
- Nieto-Quintano, P.; Mitchard, E.T.A.; Odende, R.; Batsa Mouwembe, M.A.; Rayden, T.; Ryan, C.M. The Mesic Savannas of the Bateke Plateau: Carbon Stocks and Floristic Composition. Biotropica 2018, 50, 868–880. [Google Scholar] [CrossRef]
- Martin, D.; Chatelin, Y.; Collinet, J.; Guichard, E.; Sala, G.-H.; Le Rouget, G. Les Sols du Gabon: Pédogenèse, Répartition et Aptitudes: Cartes à 1:2.000.000; ORSTOM: Paris, France, 1981; ISBN 9782709906142. [Google Scholar]
- Kittel, C.M.M.; Nielsen, K.; Tøttrup, C.; Bauer-Gottwein, P. Informing a Hydrological Model of the Ogooué with Multi-Mission Remote Sensing Data. Hydrol. Earth Syst. Sci. 2018, 22, 1453–1472. [Google Scholar] [CrossRef]
- Giresse, P. Esquisse Géologique de l’Afrique Centrale Occidentale. In Paysages Quaternaires de l’Afrique Centrale Occidentale; ORSTOM: Paris, France, 1990; pp. 15–19. ISBN 9782709910224. [Google Scholar]
- Hua, W.; Zhou, L.; Chen, H.; Nicholson, S.E.; Raghavendra, A.; Jiang, Y. Possible Causes of the Central Equatorial African Long-Term Drought. Environ. Res. Lett. 2016, 11, 124002. [Google Scholar] [CrossRef]
- Diem, J.E.; Salerno, J.D.; Palace, M.W.; Bailey, K.; Hartter, J. Teleconnections between Rainfall in Equatorial Africa and Tropical Sea Surface Temperatures: A Focus on Western Uganda. J. Appl. Meteorol. Climatol. 2021, 60, 967–979. [Google Scholar] [CrossRef]
- Swain, S.; Patel, P.; Nandi, S. Application of SPI, EDI and PNPI Using MSWEP Precipitation Data over Marathwada, India. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5505–5507. [Google Scholar]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 Gridded Precipitation Datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-Hourly 0.25° Global Gridded Precipitation (1979–2015) by Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1 Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Aniley, E.; Gashaw, T.; Abraham, T.; Demessie, S.F.; Bayabil, H.K.; Worqlul, A.W.; van Oel, P.R.; Dile, Y.T.; Chukalla, A.D.; Haileslassie, A.; et al. Evaluating the Performances of Gridded Satellite/reanalysis Products in Representing the Rainfall Climatology of Ethiopia. Geocarto Int. 2023, 38, 2278329. [Google Scholar] [CrossRef]
- Praveen Kumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J. TropFlux: Air-Sea Fluxes for the Global Tropical Oceans—Description and Evaluation. Clim. Dyn. 2012, 38, 1521–1543. [Google Scholar] [CrossRef]
- Frankignoul, C.; Chouaib, N.; Liu, Z. Estimating the Observed Atmospheric Response to SST Anomalies: Maximum Covariance Analysis, Generalized Equilibrium Feedback Assessment, and Maximum Response Estimation. J. Clim. 2011, 24, 2523–2539. [Google Scholar] [CrossRef]
- Barreto, N.J.C.; Mesquita, M.d.S.; Mendes, D.; Spyrides, M.H.C.; Pedra, G.U.; Lucio, P.S. Maximum Covariance Analysis to Identify Intraseasonal Oscillations over Tropical Brazil. Clim. Dyn. 2017, 49, 1583–1596. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An Intercomparison of Methods for Finding Coupled Patterns in Climate Data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef]
- Levine, R.C.; Turner, A.G.; Marathayil, D.; Martin, G.M. The Role of Northern Arabian Sea Surface Temperature Biases in CMIP5 Model Simulations and Future Projections of Indian Summer Monsoon Rainfall. Clim. Dyn. 2013, 41, 155–172. [Google Scholar] [CrossRef]
- Polanco-Martínez, J.M.; López-Martínez, J.L. NonParRolCor: An R Package for Estimating Rolling Correlation for Two Regular Time Series. SoftwareX 2023, 22, 101353. [Google Scholar] [CrossRef]
- McMillan, D.G. The Time-Varying Relation between Stock Returns and Monetary Variables. J. Risk Financ. Manag. 2021, 15, 9. [Google Scholar] [CrossRef]
- Litzow, M.A.; Ciannelli, L.; Puerta, P.; Wettstein, J.J.; Rykaczewski, R.R.; Opiekun, M. Nonstationary Environmental and Community Relationships in the North Pacific Ocean. Ecology 2019, 100, e02760. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, M.; Wernicke, J.; Bräuning, A. Changes in Sensitivity of Tree-Ring Widths to Climate in a Tropical Moist Forest Tree in Bangladesh. Forests 2018, 9, 761. [Google Scholar] [CrossRef]
- Salem, N.; Hussein, S. Data Dimensional Reduction and Principal Components Analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar] [CrossRef]
- Singh, C.V. Pattern Characteristics of Indian Monsoon Rainfall Using Principal Component Analysis (PCA). Atmos. Res. 2006, 79, 317–326. [Google Scholar] [CrossRef]
- Cerón, W.L.; Molina-Carpio, J.; Ayes Rivera, I.; Andreoli, R.V.; Kayano, M.T.; Canchala, T. A Principal Component Analysis Approach to Assess CHIRPS Precipitation Dataset for the Study of Climate Variability of the La Plata Basin, Southern South America. Nat. Hazards 2020, 103, 767–783. [Google Scholar] [CrossRef]
- Lienou, G.; Mahe, G.; Paturel, J.E.; Servat, E.; Sighomnou, D.; Ekodeck, G.E.; Dezetter, A.; Dieulin, C. Evolution Des Régimes Hydrologiques En Région équatoriale Camerounaise: Un Impact de La Variabilité Climatique En Afrique équatoriale? Hydrol. Sci. J. 2008, 53, 789–801. [Google Scholar] [CrossRef]
- Lübbecke, J.F.; Böning, C.W.; Keenlyside, N.S.; Xie, S.-P. On the Connection between Benguela and Equatorial Atlantic Niños and the Role of the South Atlantic Anticyclone. J. Geophys. Res. 2010, 115, 2293. [Google Scholar] [CrossRef]
- Lutz, K.; Rathmann, J.; Jacobeit, J. Classification of Warm and Cold Water Events in the Eastern Tropical Atlantic Ocean. Atmos. Sci. Lett. 2013, 14, 102–106. [Google Scholar] [CrossRef]
- Lübbecke, J.F.; McPhaden, M.J. Symmetry of the Atlantic Niño Mode. Geophys. Res. Lett. 2017, 44, 965–973. [Google Scholar] [CrossRef]
- Xia, F.; Zuo, J.; Sun, C.; Liu, A. The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models. Atmosphere 2023, 14, 359. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Zhang, W.; Koppa, A.; Collins, M.; Kumar, R. On the Role of the Atlantic Meridional Mode in Eastern European Temperature Variability. Atmos. Res. 2024, 297, 107082. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, P.; Fu, D.; Yeager, S.G.; Danabasoglu, G.; Castruccio, F.; Rosenbloom, N. Enhanced Atlantic Meridional Mode Predictability in a High-Resolution Prediction System. Sci. Adv. 2024, 10, eado6298. [Google Scholar] [CrossRef]
- Baba, K.; Bahi, L.; Ouadif, L. Enhancing Geophysical Signals Through the Use of Savitzky-Golay Filtering Method. Geofísica Int. 2014, 53, 399–409. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, B.; Li, Y.; Lin, H.; Ma, H. Applications of Savitzky-Golay Filter for Seismic Random Noise Reduction. Acta Geophys. 2016, 64, 101–124. [Google Scholar] [CrossRef]
- Roy, I.G. An Optimal Savitzky–Golay Derivative Filter with Geophysical Applications: An Example of Self-potential Data. Geophys. Prospect. 2020, 68, 1041–1056. [Google Scholar] [CrossRef]
- An, S.-I.; Wang, B. Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter. J. Clim. 2001, 14, 2164–2176. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, C.; Jiang, N. Impacts of the Annual Cycle of Background SST in the Tropical Pacific on the Phase and Amplitude of ENSO. Atmos. Ocean. Sci. Lett. 2025, 18, 100496. [Google Scholar] [CrossRef]
- Bogning, S.; Frappart, F.; Paris, A.; Blarel, F.; Niño, F. Hydro-Climatology Study of the Ogooué River Basin Using Hydrological Modeling and Satellite Altimetry. Adv. Space Res. 2021, 68, 672–690. [Google Scholar] [CrossRef]
- Maloba Makanga, J.D. Variabilité Pluviométrique de La Petite Saison Sèche Au Gabon. In Proceedings of the XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège, Belgium, 1–4 July 2015; Université de Liège: Liège, Belgium, 2015; p. 6. [Google Scholar]
- An, S.-I. Conditional Maximum Covariance Analysis and Its Application to the Tropical Indian Ocean SST and Surface Wind Stress Anomalies. J. Clim. 2003, 16, 2932–2938. [Google Scholar] [CrossRef]
- Riaz, S.M.F.; Iqbal, M.J.; Baig, M.J. Influence of Siberian High on Temperature Variability over Northern Areas of South Asia. Meteorol. Atmos. Phys. 2018, 130, 441–457. [Google Scholar] [CrossRef]
- Joetzjer, E.; Douville, H.; Delire, C.; Ciais, P. Present-Day and Future Amazonian Precipitation in Global Climate Models: CMIP5 versus CMIP3. Clim. Dyn. 2013, 41, 2921–2936. [Google Scholar] [CrossRef]
- Koesuma, S.; Andriani, R.D.; Legowo, B. Analyzing of the Indian Ocean Dipole (IOD) Phenomena in Relation to Climate Change in Indonesia: A Review. J. Phys. Conf. Ser. 2021, 1918, 022030. [Google Scholar] [CrossRef]
- Jarugula, S.; McPhaden, M.J. Indian Ocean Dipole Affects Eastern Tropical Atlantic Salinity through Congo River Basin Hydrology. Commun. Earth Environ. 2023, 4, 366. [Google Scholar] [CrossRef]
- Izumo, T.; Vialard, J.; Lengaigne, M.; Suresh, I. Relevance of Relative Sea Surface Temperature for Tropical Rainfall Interannual Variability. Geophys. Res. Lett. 2020, 47, e2019GL086182. [Google Scholar] [CrossRef]
- Stuecker, M.F. The Climate Variability Trio: Stochastic Fluctuations, El Niño, and the Seasonal Cycle. Geosci. Lett. 2023, 10, 51. [Google Scholar] [CrossRef]
- Pothapakula, P.K.; Primo, C.; Sørland, S.; Ahrens, B. The Synergistic Impact of ENSO and IOD on the Indian Summer Monsoon Rainfall in Observations and Climate Simulations—An Information Theory Perspective. Earth Syst. Dyn. Discuss. 2020, 11, 903–923. [Google Scholar] [CrossRef]
- Crespo, L.R.; Keenlyside, N.; Koseki, S. The Role of Sea Surface Temperature in the Atmospheric Seasonal Cycle of the Equatorial Atlantic. Clim. Dyn. 2019, 52, 5927–5946. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, J.; Fan, H.; Zhang, L.; Chen, M.; Wang, X.; Wang, D. Unveiling the Role of South Tropical Atlantic in Winter Atlantic Niño Inducing La Niña. Nat. Commun. 2025, 16, 1612. [Google Scholar] [CrossRef]
TECs | Before Savitzky–Golay Filter | After Savitzky–Golay Filter |
---|---|---|
Atlantic Ocean | 0.4 | 0.65 |
Pacific Ocean | 0.23 | 0.5 |
Indian Ocean | 0.43 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogning, S.; Frappart, F.; Ebode, V.B.; Onguene, R.; Mahé, G.; Tchilibou, M.; Étamé, J.; Braun, J.-J. Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans. Water 2025, 17, 753. https://doi.org/10.3390/w17050753
Bogning S, Frappart F, Ebode VB, Onguene R, Mahé G, Tchilibou M, Étamé J, Braun J-J. Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans. Water. 2025; 17(5):753. https://doi.org/10.3390/w17050753
Chicago/Turabian StyleBogning, Sakaros, Frédéric Frappart, Valentin Brice Ebode, Raphael Onguene, Gil Mahé, Michel Tchilibou, Jacques Étamé, and Jean-Jacques Braun. 2025. "Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans" Water 17, no. 5: 753. https://doi.org/10.3390/w17050753
APA StyleBogning, S., Frappart, F., Ebode, V. B., Onguene, R., Mahé, G., Tchilibou, M., Étamé, J., & Braun, J.-J. (2025). Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans. Water, 17(5), 753. https://doi.org/10.3390/w17050753