A Reservoir Dam Monitoring Technology Integrating Improved ABC Algorithm and SVM Algorithm
Abstract
:1. Introduction
2. Monitoring and Analysis of Reservoir Dam Deformation
2.1. Description of the Principle of ABC Algorithm
- (1)
- Input of dam monitoring data
- (2)
- Processing of data acquisition for each monitor
- (3)
- Perform algorithm analysis on the processed data and output the final result
2.2. Dam Displacement Prediction Algorithm with the Improved ABC and SVM
3. Results and Discussion
3.1. Data Analysis for Reservoir Dam Monitoring
3.2. Accuracy of Reservoir Dam Monitoring
3.3. Accuracy of Results in Reservoir Dam Monitoring
3.4. Predictability of Reservoir Dam Monitoring
3.5. Discussion of Study Results
3.5.1. Error Analysis of Dam Monitoring Results
3.5.2. The Trend of Data Changes in Monitoring Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biswas, N.K.; Hossain, F.; Bonnema, M.; Lee, H.; Chishtie, F. Towards a global Reservoir Assessment Tool for predicting hydrologic impacts and operating patterns of existing and planned reservoirs. Environ. Model. Softw. 2021, 140, 105043. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Karimian, H.; Xiao, G.; Huang, J. A novel framework for prediction of dam deformation based on extreme learning machine and Levy flight bat algorithm. J. Hydroinform. 2021, 23, 935–949. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, S.; Fan, X.; Shi, A.; Yin, K. Deformation behavior and triggering mechanism of the Tuandigou landslide around the reservoir area of Baihetan hydropower station. Landslides 2023, 20, 1679–1689. [Google Scholar] [CrossRef]
- Galvan, J.C.; Padron, L.A.; Aznarez, J.J.; Maeso, O. Boundary element algorithm for the analysis of the dynamic response of the Soria arch dam and experimental validation from ambient vibration tests. Eng. Anal. Bound. Elem. 2022, 144, 67–80. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Z.; Yang, Y.; Kong, Z.; Gao, C.; Tian, W. Experimental Study on Deformation Monitoring of Large Landslide in Reservoir Area of Hydropower Station Based on GB-InSAR. Adv. Civ. Eng. 2021, 2021, 586340. [Google Scholar] [CrossRef]
- Han, Z.; JianKang, C.; Jian, K.Q.; Liang, P.; Huibao, H. A Fast Prediction Algorithm for Stability Safety and Reliability of Reservoir Bank Rock Slopes Based on Deformation Monitoring Data. Front. Earth Sci. 2022, 10, 944299. [Google Scholar] [CrossRef]
- He, L.; Wang, S.; Gu, Y.; Pang, Q.; Wu, Y.; Ding, J.; Yan, J. Seepage behavior assessment of earth-rock dams based on Bayesian network. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211058672. [Google Scholar] [CrossRef]
- Ishfaque, M.; Dai, Q.; ul Haq, N.; Jadoon, K.; Shahzad, S.M.; Janjuhah, H.T. Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan. Energies 2022, 15, 3123. [Google Scholar] [CrossRef]
- Izumi, A.; Hori, T. Applicability of Water Level Monitoring System and Water Level Estimation System to Tank Cascade in Sri Lanka. Jpn. Agric. Res. Q. 2021, 55, 35–43. [Google Scholar] [CrossRef]
- Jhong, B.-C.; Fang, H.-T.; Huang, C.-C. Assessment of Effective Monitoring Sites in a Reservoir Watershed by Support Vector Machine Coupled with Multi-Objective Genetic Algorithm for Sediment Flux Prediction during Typhoons. Water Resour. Manag. 2021, 35, 2387–2408. [Google Scholar] [CrossRef]
- Kong, X.-s.; Yang, W.; Shan, R.-l.; Wang, S.; Fang, J. Ultimate water level and deformation failures of the artificial dam in the coal mine underground reservoir. Eng. Fail. Anal. 2024, 162, 108367. [Google Scholar] [CrossRef]
- Li, X.; Wen, Z.; Su, H. An approach using random forest intelligent algorithm to construct a monitoring algorithm for dam safety. Eng. Comput. 2021, 37, 39–56. [Google Scholar] [CrossRef]
- Ma, C.; Xu, X.; Yang, J.; Cheng, L. Safety Monitoring and Management of Reservoir and Dams. Water 2023, 15, 1078. [Google Scholar] [CrossRef]
- Miranda, M.N.; Rosa, C.; Peres, A.; Maia, R. Sedimentation assessment and effects in Venda Nova dam reservoir (Portugal). Sci. Total Environ. 2021, 766, 144261. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoliestahbanati, A.; Milillo, P.; Kuai, H.; Giardina, G. Pre-collapse spaceborne deformation monitoring of the Kakhovka dam, Ukraine, from 2017 to 2023. Commun. Earth Environ. 2024, 5, 145. [Google Scholar] [CrossRef]
- Vazquez-Ontiveros, J.R.; Ruiz-Armenteros, A.M.; de Lacy, M.C.; Gaxiola-Camacho, J.R.; Anaya-Diaz, M.; Vazquez-Becerra, G.E. Risk Evaluation of the Sanalona Earthfill Dam Located in Mexico Using Satellite Geodesy Monitoring and Numerical Algorithming. Remote Sens. 2023, 15, 819. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Y.; Gong, T.; Liu, T.; Sui, Z.; Fan, J.; Wang, Z. Dam Surface Deformation Monitoring and Analysis Based on PS-InSAR Technology: A Case Study of Xiaolangdi Reservoir Dam in China. Water 2023, 15, 3298. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Z.; Tang, S.; Wan, S.; Yu, W. Numerical simulation analysis of ecological monitoring of small reservoir dam based on maximum entropy algorithm. Open Geosci. 2023, 15, 20220501. [Google Scholar] [CrossRef]
- Yang, X.; Xiang, Y.; Wang, Y.; Shen, G. A Dam Safety State Prediction and Analysis Algorithm Based on EMD-SSA-LSTM. Water 2024, 16, 395. [Google Scholar]
- Yun, T.; Butler, K.E.; MacQuarrie, K.T.B. Investigation of seepage near the interface between an embankment dam and a concrete structure: Monitoring and algorithmling of seasonal temperature trends. Can. Geotech. J. 2023, 60, 453–470. [Google Scholar] [CrossRef]
Relevant Index | ABC and SVM Algorithm | Standard ABC Algorithm | Standard SVM Algorithm | Standard ANN Algorithm |
---|---|---|---|---|
Water level [m (%)] | 193.94 (94.42) | 173.40 (84.42) | 143.2 (83.12) | 132.41 (81.12) |
Pore water pressure [kPa (%)] | 144.23 (96.15) | 129.83 (86.55) | 119.23 (85.32) | 107.24 (80.33) |
Deformation of dam body [mm (%)] | 0.49 (98.62) | 0.044 (88.73) | 0.021 (68.23) | 0.004 (78.11) |
Temperature [°C (%)] | 26.75 (92.24) | 23.09 (82.41) | 20.22 (80.31) | 19.32 (78.31) |
Humidity [% (%)] | 42.53 (94.52) | 38.04 (84.54) | 36.33 (79.32) | 36.33 (79.32) |
Vibration [m (%)] | 9.10 (91.00) | 8.10 (81.01) | 7.89 (78.22) | 7.02 (72.13) |
Monitoring Indicators | Standard ABC Algorithm | ABC and SVM Algorithm | Standard SVM Algorithm | Standard ANN Algorithm |
---|---|---|---|---|
Water level | 75.36 | 95.12 | 85.25 | 78.63 |
Pore water pressure | 82.62 | 92.48 | 75.14 | 74.35 |
Deformation of the dam Body | 72.03 | 95.69 | 74.02 | 82.36 |
Temperature | 76.95 | 85.89 | 65.24 | 72.32 |
Humidity | 85.36 | 91.07 | 75.42 | 71.96 |
Vibration | 92.63 | 97.79 | 72.32 | 68.75 |
The Index of Statistical | ABC and SVM Algorithm | Standard ABC Algorithm | Standard SVM Algorithm |
---|---|---|---|
Independence of results (%) | 0.88 | 0.81 | 0.72 |
Result characteristics (%) | 0.92 | 0.43 | 0.68 |
Correlation of results (%) | 0.03 | 0.09 | 0.42 |
Degree of conformity with random sampling results (%) | 0.94 | 0.72 | 0.71 |
Degree of agreement between theoretical prediction and actual test (%) | 0.89 | 0.73 | 0.63 |
Statistical Indicators | ABC–SVM Algorithm | Standard ABC Algorithm | Standard SVM Algorithm |
---|---|---|---|
RMS error | 0.2334 | 0.2564 | 0.2623 |
Sum of the remaining squares | 71.2 | 75.2 | 76.35 |
Statistical Indicators | ABC–SVM Algorithm | Standard ABC Algorithm | Standard SVM Algorithm | Standard ANN Algorithm |
---|---|---|---|---|
Performance deviations | 82.3 | 85.6 | 77.33 | 76.63 |
Stability deviations | 86.2 | 35.2 | 35.85 | 37.64 |
Index | Restraint | ABC and SVM Algorithm | Standard ABC Algorithm | Standard SVM Algorithm | Standard ANN Algorithm | X2 | p |
---|---|---|---|---|---|---|---|
stability | Daytime | 33.33 | 22.36 | 18.63 | 10.32 | 18.000 | 0.324 |
Nighttime | 22.34 | 18.63 | 20.65 | 16.35 | |||
Summertime | 28.96 | 25.32 | 16.35 | 10.62 | |||
Wintertime | 46.95 | 33.69 | 44.37 | 38.62 | |||
Spring- and falltime | 25.75 | 22.36 | 18.63 | 17.32 | |||
universality | Daytime | 32.61 | 17.32 | 29.66 | 28.96 | 15.000 | 0.241 |
Nighttime | 29.65 | 28.63 | 20.77 | 19.75 | |||
Summertime | 13.85 | 10.66 | 12.68 | 11.36 | |||
Wintertime | 45.96 | 43.39 | 36.89 | 30.88 | |||
Spring- and falltime | 31.72 | 17.32 | 29.66 | 27.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Bao, T.; Yuan, M.; Zhang, S. A Reservoir Dam Monitoring Technology Integrating Improved ABC Algorithm and SVM Algorithm. Water 2025, 17, 302. https://doi.org/10.3390/w17030302
Xu Y, Bao T, Yuan M, Zhang S. A Reservoir Dam Monitoring Technology Integrating Improved ABC Algorithm and SVM Algorithm. Water. 2025; 17(3):302. https://doi.org/10.3390/w17030302
Chicago/Turabian StyleXu, Yunqian, Tengfei Bao, Mingdao Yuan, and Shu Zhang. 2025. "A Reservoir Dam Monitoring Technology Integrating Improved ABC Algorithm and SVM Algorithm" Water 17, no. 3: 302. https://doi.org/10.3390/w17030302
APA StyleXu, Y., Bao, T., Yuan, M., & Zhang, S. (2025). A Reservoir Dam Monitoring Technology Integrating Improved ABC Algorithm and SVM Algorithm. Water, 17(3), 302. https://doi.org/10.3390/w17030302