Performance Comparison of Microbial Fuel Cells Using Ceramic Membranes Fabricated from Various Commercial Clays for Wastewater Treatment Purposes
Abstract
1. Introduction
2. Materials and Methods
2.1. Clay Selection
2.2. Fabrication of Ceramic Membranes
2.3. MFC Design and Construction
2.4. MFC Inoculation and Operation
2.5. COD (Chemical Oxygen Demand) Determination
2.6. Coulombic Efficiency
2.7. Physicochemical Characterization
3. Results and Discussion
3.1. First Stage (Open-Circuit Conditions)
3.2. Second Stage (Closed-Circuit Conditions)
3.3. COD Removal
3.4. Coulombic Efficiency
3.5. SEM/EDS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adetunji, A.I.; Olaniran, A.O. Treatment of industrial oily wastewater by advanced technologies: A review. Appl. Water Sci. 2021, 11, 98. [Google Scholar] [CrossRef]
- Sharma, A.; Đelević, L.; Herkendell, K. Next-Generation Proton-Exchange Membranes in Microbial Fuel Cells: Overcoming Nafion’s Limitations. Energy Technol. 2024, 12, 2301346. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M. Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res. J. 2015, 2, 296–300. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef]
- Tan, W.H.; Chong, S.; Fang, H.W.; Pan, K.L.; Mohamad, M.; Lim, J.W.; Tiong, T.J.; Chan, Y.J.; Huang, C.-M.; Yang, T.C.-K. Microbial Fuel Cell Technology—A Critical Review on Scale-Up Issues. Processes 2021, 9, 985. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Slate, A.J.; Whitehead, K.A.; Brownson, D.A.C.; Banks, C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60–81. [Google Scholar] [CrossRef]
- Chakma, R.; Hossain, M.K.; Paramasivam, P.; Bousbih, R.; Amami, M.; Toki, G.F.I.; Haldhar, R.; Karmaker, A.K. Recent Applications, Challenges, and Future Prospects of Microbial Fuel Cells: A Review. Glob. Chall. 2025, 9, 2500004. [Google Scholar] [CrossRef]
- Vidhyeswari, D.; Surendhar, A.; Bhuvaneshwari, S. General aspects and novel PEMss in microbial fuel cell technology: A review. Chemosphere 2022, 309, 136454. [Google Scholar] [CrossRef]
- Hernández-Flores, G.; Poggi-Varaldo, H.M.; Solorza-Feria, O. Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells. Int. J. Hydrogen Energy 2016, 41, 23354–23362. [Google Scholar] [CrossRef]
- Yousefi, V.; Mohebbi-Kalhori, D.; Samimi, A. Ceramic-based microbial fuel cells (MFCs): A review. Int. J. Hydrogen Energy 2017, 42, 1672–1690. [Google Scholar] [CrossRef]
- Daud, S.M.; Noor, Z.Z.; Mutamim, N.S.A.; Baharuddin, N.H.; Aris, A.; Faizal, A.N.M.; Ibrahim, R.S.; Suhaimin, N.S. A critical review of ceramic microbial fuel cell: Economics, long-term operation, scale-up, performances and challenges. Fuel 2024, 365, 131150. [Google Scholar] [CrossRef]
- Daud, S.M.; Kim, B.H.; Ghasemi, M.; Daud, W.R.W. Separators used in microbial electrochemical technologies: Current status and future prospects. Bioresour. Technol. 2015, 195, 170–179. [Google Scholar] [CrossRef]
- Pasternak, G.; Greenman, J.; Ieropoulos, I. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. ChemSusChem 2016, 9, 88–96. [Google Scholar] [CrossRef]
- Jadhav, D.A.; Park, S.G.; Eisa, T.; Mungray, A.K.; Madenli, E.C.; Olabi, A.G.; Abdelkareem, M.A.; Chae, K.-J. Current outlook towards feasibility and sustainability of ceramic membranes for practical scalable applications of microbial fuel cells. Renew. Sustain. Energy Rev. 2022, 167, 112769. [Google Scholar] [CrossRef]
- Roslee Ab Jamal, N.A.S.; Othman, N.H.; Abdul Razak, N.A.; Alias, N.H.; Mat Shayuti, M.S.; Marpani, F.; Razlan, M.R.M.; Jumahat, A.; Othman, M.H.D.; Lau, W.J.; et al. Fabrication of low-cost granite dust ceramic hollow fibre membrane: Effects of sintering temperature. Mater. Today Proc. 2023; in press. [Google Scholar]
- Issaoui, M.; Limousy, L. Low-cost ceramic membranes: Synthesis, classifications, and applications. C. R. Chim. 2018, 22, 175–187. [Google Scholar] [CrossRef]
- Tiwari, A.; Yadav, N.; Jadhav, D.A.; Saxena, D.; Anghan, K.; Sandhwar, V.K.; Saxena, S. A Critical Review on the Advancement of the Development of Low-Cost Membranes to Be Utilized in Microbial Fuel Cells. Water 2024, 16, 1597. [Google Scholar] [CrossRef]
- Ahmad, S.T.; Ahmad, R.; Shaukat, H.; Rout, P.R.; Fazal, T.; Dumfort, A. Bioenergy production from wastewater using cost-effective ceramic membranes: A review. Environ. Chem. Lett. 2025, 23, 463–490. [Google Scholar] [CrossRef]
- Cheraghipoor, M.; Mohebbi-Kalhori, D.; Noroozifar, M.; Maghsoodlou, M.T. Comparative study of bioelectricity generation in a microbial fuel cell using ceramic membranes made of ceramic powder, Kalporgan’s soil, and acid leached Kalporgan’s soil. Energy 2019, 178, 368–377. [Google Scholar] [CrossRef]
- Salar-García, M.J.; Ieropoulos, I. Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells. J. Power Sources 2020, 451, 227741. [Google Scholar] [CrossRef]
- Salar-García, M.J.; Walter, X.A.; Gurauskis, J.; de Ramón Fernández, A.; Ieropoulos, I. Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochim. Acta 2021, 367, 137385. [Google Scholar] [CrossRef]
- Gong, K.; Zhang, X.; Tan, B.; Tang, J.; Wang, L. Development and characterization of clay based ceramic membrane with high proton conductivity and low cost for application in microbial fuel cell. Mater. Res. Bull. 2025, 184, 113278. [Google Scholar] [CrossRef]
- Khalili, H.-B.; Mohebbi-Kalhori, D.; Afarani, M.S. Microbial fuel cell (MFC) using commercially available unglA-Zed ceramic wares: Low-cost ceramic separators suitable for scale-up. Int. J. Hydrogen Energy 2017, 42, 8233–8241. [Google Scholar] [CrossRef]
- Ghadge, A.N.; Ghangrekar, M.M. Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells. Electrochim. Acta 2015, 166, 320–328. [Google Scholar] [CrossRef]
- González-Nava, C.; Godínez, L.A.; Chávez, A.U.; Cercado, B.; Arriaga, L.G.; Rodríguez-Valadez, F.J. Study of different carbon materials for their use as bioanodes in microbial fuel cells. Water Sci. Technol. 2016, 73, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Rojas, F.A.; Hernández-Benitez, C.; Ramírez, V.; Ieropoulous, I.; Godínez, L.A.; Robles, I.; Meza, D.B.; Rodríguez-Valadez, F.J. Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell. Fuel Cells 2024, 24, e202300241. [Google Scholar] [CrossRef]
- Pandit, S.; Das, D. Principles of Microbial Fuel Cell for the Power Generation. In Microbial Fuel Cell; Springer International Publishing: Cham, Switzerland, 2018; pp. 23–24. [Google Scholar]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar, F.A.R.; Coutiño, V.A.R.; Godínez, L.A.; Rodríguez-Valadez, F.J. Performance Comparison of Microbial Fuel Cells Using Ceramic Membranes Fabricated from Various Commercial Clays for Wastewater Treatment Purposes. Water 2025, 17, 3064. https://doi.org/10.3390/w17213064
Aguilar FAR, Coutiño VAR, Godínez LA, Rodríguez-Valadez FJ. Performance Comparison of Microbial Fuel Cells Using Ceramic Membranes Fabricated from Various Commercial Clays for Wastewater Treatment Purposes. Water. 2025; 17(21):3064. https://doi.org/10.3390/w17213064
Chicago/Turabian StyleAguilar, Fernando Andrés Rojas, Víctor A. Ramírez Coutiño, Luis A. Godínez, and Francisco J. Rodríguez-Valadez. 2025. "Performance Comparison of Microbial Fuel Cells Using Ceramic Membranes Fabricated from Various Commercial Clays for Wastewater Treatment Purposes" Water 17, no. 21: 3064. https://doi.org/10.3390/w17213064
APA StyleAguilar, F. A. R., Coutiño, V. A. R., Godínez, L. A., & Rodríguez-Valadez, F. J. (2025). Performance Comparison of Microbial Fuel Cells Using Ceramic Membranes Fabricated from Various Commercial Clays for Wastewater Treatment Purposes. Water, 17(21), 3064. https://doi.org/10.3390/w17213064

