Environmental Drivers of Macrozoobenthos Structure Along a Discontinuous Tributary of the Oder River (North-Western Poland)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Macroinvertebrates Sampling
2.3. Granulation Analysis of the Substrate
2.4. Environmental Data
2.5. Statistical Analysis
3. Results
3.1. Longitudinal Granulometric Zonation of the Myśla River and Its Physicochemical and Hydrological Variables
3.2. Macrozoobenthos Communities’ Structure Along the Myśla River
3.3. Holistic Impact: Sediments and Other Environmental Factors
4. Discussion
- (1)
- the river’s continuity is strongly disrupted by lake interference, which primarily alters water temperature and nutrient concentrations, driving significant changes in macrozoobenthos composition and functional structure;
- (2)
- the taxa family richness was significant (31 taxa) indicating favourable habitat conditions in this lowland river dominated by filter-feeding and grazing taxa; and
- (3)
- granulometry, dominated by sandy substrate, also played an important role in shaping community structure and influencing taxa composition.
4.1. Myśla River Continuity Disruption and Lake Influence
4.2. Macrozoobenthos Communities Composition and Structure
4.3. Influence of Abiotic Factors on Macrozoobenthos Communities
4.4. The Influence of Substrate as a Habitat for Macrozoobenthos Communities
4.5. Functional Feeding Group Distribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorp, J.H.; Dodds, W.K.; Robbins, C.J.; Maasri, A.; Arsenault, E.R.; Lutchen, J.A.; Tromboni, F.; Hayford, B.; Pyron, M.; Mathews, G.S.; et al. A Framework for Lotic Macrosystem Research. Ecosphere 2021, 12, e03342. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Ding, W.; Ye, W.; Nan, X.; Lu, R. Ecosystem Service Research in Protected Areas: A Systematic Review of the Literature on Current Practices and Future Prospects. Ecol. Indic. 2023, 154, 110817. [Google Scholar] [CrossRef]
- Ferreira, V.; Albariño, R.; Larrañaga, A.; LeRoy, C.J.; Masese, F.O.; Moretti, M.S. Ecosystem Services Provided by Small Streams: An Overview. Hydrobiologia 2023, 850, 2501–2535. [Google Scholar] [CrossRef]
- Ahmedi, F.; Makolli, S. The Correlation of Water Quality Parameters over Wireless Sensors Generated Dataset in the Sitnica River in Kosovo. J. Water Land Dev. 2023, 59, 8–12. [Google Scholar] [CrossRef]
- Moi, D.A.; Barrios, M.; Tesitore, G.; Burwood, M.; Romero, G.Q.; Mormul, R.P.; Kratina, P.; Juen, L.; Michelan, T.S.; Montag, L.F.A.; et al. Human Land—Uses Homogenize Stream Assemblages and Reduce Animal Biomass Production. J. Anim. Ecol. 2023, 92, 1176–1189. [Google Scholar] [CrossRef]
- Ding, N.; Yang, W.; Zhou, Y.; González-Bergonzoni, I.; Zhang, J.; Chen, K.; Vidal, N.; Jeppesen, E.; Liu, Z.; Wang, B. Different Responses of Functional Traits and Diversity of Stream Macroinvertebrates to Environmental and Spatial Factors in the Xishuangbanna Watershed of the Upper Mekong River Basin, China. Sci. Total Environ. 2017, 574, 288–299. [Google Scholar] [CrossRef]
- Elias, J.D.; Ijumba, J.N.; Mgaya, Y.D.; Mamboya, F.A. Study on Freshwater Macroinvertebrates of Some Tanzanian Rivers as a Basis for Developing Biomonitoring Index for Assessing Pollution in Tropical African Regions. J. Ecosyst. 2014, 2014, 985389. [Google Scholar] [CrossRef]
- Deborde, D.; Hernandez, M.B.; Magbanua, F. Benthic Macroinvertebrate Community as an Indicator of Stream Health: The Effects of Land Use on Stream Benthic Macroinvertebrates. Sci. Diliman 2016, 28, 5–26. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Community 2000, L327, 1–72. [Google Scholar]
- Strayer, D.L. Challenges for Freshwater Invertebrate Conservation. J. N. Am. Benthol. Soc. 2006, 25, 271–287. [Google Scholar] [CrossRef]
- Duan, X.; Wang, Z.; Xu, M.; Zhang, K. Effect of Streambed Sediment on Benthic Ecology. Int. J. Sediment Res. 2009, 24, 325–338. [Google Scholar] [CrossRef]
- Horváth, Z.; Ptacnik, R.; Vad, C.F.; Chase, J.M. Habitat Loss over Six Decades Accelerates Regional and Local Biodiversity Loss via Changing Landscape Connectance. Ecol. Lett. 2019, 22, 1019–1027. [Google Scholar] [CrossRef]
- Wagenhoff, A.; Townsend, C.R.; Matthaei, C.D. Macroinvertebrate Responses along Broad Stressor Gradients of Deposited Fine Sediment and Dissolved Nutrients: A Stream Mesocosm Experiment. J. Appl. Ecol. 2012, 49, 892–902. [Google Scholar] [CrossRef]
- Meißner, T.; Sures, B.; Feld, C.K. Multiple Stressors and the Role of Hydrology on Benthic Invertebrates in Mountainous Streams. Sci. Total Environ. 2019, 663, 841–851. [Google Scholar] [CrossRef]
- McKenzie, M.; Brooks, A.; Callisto, M.; Collins, A.L.; Durkota, J.M.; Death, R.G.; Jones, J.I.; Linares, M.S.; Matthaei, C.D.; Monk, W.A.; et al. Freshwater Invertebrate Responses to Fine Sediment Stress: A Multi-continent Perspective. Glob. Change Biol. 2024, 30, e17084. [Google Scholar] [CrossRef] [PubMed]
- Beisel, J.-N.; Usseglio-Polatera, P.; Moreteau, J.-C. The Spatial Heterogeneity of a River Bottom: A Key Factor Determining Macroinvertebrate Communities. Hydrobiologia 2000, 422, 163–171. [Google Scholar] [CrossRef]
- Leunda, P.M.; Oscoz, J.; Miranda, R.; Ariño, A.H. Longitudinal and Seasonal Variation of the Benthic Macroinvertebrate Community and Biotic Indices in an Undisturbed Pyrenean River. Ecol. Indic. 2009, 9, 52–63. [Google Scholar] [CrossRef]
- Kanaya, G.; Suzuki, T.; Kikuchi, E. Spatio-Temporal Variations in Macrozoobenthic Assemblage Structures in a River-Affected Lagoon (Idoura Lagoon, Sendai Bay, Japan): Influences of Freshwater Inflow. Estuar. Coast. Shelf Sci. 2011, 92, 169–179. [Google Scholar] [CrossRef]
- Lévêque, C. Ecosystèmes Aquatiques. Volume 77 de Les Fondamentaux. La Bibliothèque de Base de l’Étudiant En Sciences, 1st ed.; Hachette: New York, NY, USA, 1996; Volume 77. [Google Scholar]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Cote, D.; Kehler, D.G.; Bourne, C.; Wiersma, Y.F. A New Measure of Longitudinal Connectivity for Stream Networks. Landsc. Ecol. 2009, 24, 101–113. [Google Scholar] [CrossRef]
- Poole, G.C. Fluvial Landscape Ecology: Addressing Uniqueness within the River Discontinuum. Freshw. Biol. 2002, 47, 641–660. [Google Scholar] [CrossRef]
- Scown, M.W.; Thoms, M.C. The Discontinuum of River Networks: The Importance of Geomorphic Boundaries. Landsc. Ecol. 2023, 38, 1307–1319. [Google Scholar] [CrossRef]
- Calapez, A.R.; Serra, S.R.Q.; Rivaes, R.; Aguiar, F.C.; Feio, M.J. Influence of River Regulation and Instream Habitat on Invertebrate Assemblage’ Structure and Function. Sci. Total Environ. 2021, 794, 148696. [Google Scholar] [CrossRef]
- Wang, J.; Bao, S.; Zhang, K.; Heino, J.; Jiang, X.; Liu, Z.; Tao, J. Responses of Macroinvertebrate Functional Trait Structure to River Damming: From within-River to Basin-Scale Patterns. Environ. Res. 2023, 220, 115255. [Google Scholar] [CrossRef]
- Cichocka, M. Assessment of the Ecological Status of Rivers Based on Macrozoobenthos. In Biological Methods of Assessing the Status of the Environment; Ciecierska, H., Dynowska, M., Eds.; Mantis Publishing House: Olsztyn, Poland, 2013; Volume 2, pp. 150–178. [Google Scholar]
- Bis, B.; Mikulec, A.; Bielczyńska, A. Macrozoobenthos in Rivers. In Manual for monitoring biological elements and classification of the ecological status of surface waters. In Update of Methods; Kolada, A., Ed.; Environmental Monitoring Library: Warsaw, Poland, 2020; pp. 113–159. (In Polish) [Google Scholar]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’Eau Douce. Systematique, Biologie, Ecologie; CNRS Editors: Paris, France, 2010. [Google Scholar]
- Hewlett, R. Implications of Taxonomic Resolution and Sample Habitat for Stream Classification at a Broad Geographic Scale. J. N. Am. Benthol. Soc. 2000, 19, 352–361. [Google Scholar] [CrossRef]
- Cardoso, M.; Shimano, Y.; Cruz, P.; Boldrini, R.; Mariano, R.; Nessimian, J.; Molineri, C.; Salles, F.; Andrade, A.; De Marco Júnior, P.; et al. Assessing the Distribution of Mayflies (Ephemeroptera: Insecta) in the Brazilian Amazon to Guide More Effective Conservation. Aquat. Conserv. 2023, 33, 337–348. [Google Scholar] [CrossRef]
- Krepski, T.; Kuczyńska, K.; Czerniawski, R. Outflows from Lakes as Ecotones—Stable Conditions Maintain Macroinvertebrates Biodiversity. Sci. Total Environ. 2023, 881, 163264. [Google Scholar] [CrossRef]
- Schmidt-Kloiber, A.; Hering, D. www.Freshwaterecology.Info—An Online Tool That Unifies, Standardises and Codifies More than 20,000 European Freshwater Organisms and Their Ecological Preferences. Ecol. Indic. 2015, 53, 271–282. [Google Scholar] [CrossRef]
- Chiorino, M.; Spreafico, C.; Solazzo, D.; Doretto, A. Biodiversity, Ecological Status and Ecosystem Attributes of Agricultural Ditches Based on the Analysis of Macroinvertebrate Communities. Diversity 2024, 16, 558. [Google Scholar] [CrossRef]
- Astorga Roine, A.; Reid, B.; Uribe, L.; Moreno-Meynard, P.; Fierro, P.; Madriz, I.; Death, R.G. Macroinvertebrate Community Composition and Richness along Extreme Gradients: The Role of Local, Catchment, and Climatic Variables in Patagonian Headwater Streams. Freshw. Biol. 2022, 67, 445–460. [Google Scholar] [CrossRef]
- Tolkamp, H.H. Organism-Substrate Relationships in Lowland Streams. Ph.D. Thesis, Landbouwhogeschool Wageningen, Wageningen, The Netherlands, 1980. [Google Scholar]
- Elvira, B.; Nicola, G.G.; Ayllón, D.; Almodóvar, A. Determinants of Large-scale Spatial Distribution and Seasonal Microhabitat Selection Patterns of the Endangered Freshwater Blenny Salaria Fluviatilis in the Ebro River Basin, Spain. Aquat. Conserv. 2021, 31, 3261–3275. [Google Scholar] [CrossRef]
- Fu, L.; Jiang, Y.; Ding, J.; Liu, Q.; Peng, Q.-Z.; Kang, M.-Y. Impacts of Land Use and Environmental Factors on Macroinvertebrate Functional Feeding Groups in the Dongjiang River Basin, Southeast China. J. Freshw. Ecol. 2016, 31, 21–35. [Google Scholar] [CrossRef]
- Johan, F.; Jafri, M.Z.; Lim, H.S.; Wan Maznah, W.O. Laboratory Measurement: Chlorophyll-a Concentration Measurement with Acetone Method Using Spectrophotometer. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Selangor Darul Ehsan, Malaysia, 9–12 December 2014; pp. 744–748. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing: R Foundation for Statistical Computing, Vienna. Available online: https://www.R-project.org/ (accessed on 3 April 2025).
- Fox, J. Using the R Commander: A Point-and-Click Interface for R; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-4190-3. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An RPackage for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Hammer, Ø. PAleontological Statistics, Version 4.10 Reference Manual; University of Oslo: Oslo, Norway, 2024. [Google Scholar]
- Dinno, A. Dunn’s Test of Multiple Comparisons Using Rank Sums, Version 1.3.6. 2024. Available online: https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf (accessed on 14 September 2025).
- Krebs, C.J. Ecological Methodology, 1st ed.; Harper & Row, Publishers: New York, NY, USA, 1989. [Google Scholar]
- Zou, Y.; van der Werf, W.; Liu, Y.; Axmacher, J.C. Predictability of Species Diversity by Family Diversity across Global Terrestrial Animal Taxa. Glob. Ecol. Biogeogr. 2020, 29, 629–644. [Google Scholar] [CrossRef]
- Pires, M.M.; Grech, M.G.; Stenert, C.; Maltchik, L.; Epele, L.B.; McLean, K.I.; Kneitel, J.M.; Bell, D.A.; Greig, H.S.; Gagne, C.R.; et al. Does Taxonomic and Numerical Resolution Affect the Assessment of Invertebrate Community Structure in New World Freshwater Wetlands? Ecol. Indic. 2021, 125, 107437. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.D. 100 Statistical Tests in R. Easy R Series, 1st ed.; Heather Hills: Bradenton, FL, USA, 2013. [Google Scholar]
- Cummins, K.W.; Wilzbach, M.A. Field Procedures of Analysis of Functional Feeding Groups of Stream Macroinvertebrates; Appalachian Environmental Laboratory, University of Maryland: College Park, MD, USA, 1985. [Google Scholar]
- Allan, J.D. Stream Ecology. Structure and Function of Running Waters, 1st ed.; Chapmann & Hall: New York, NY, USA, 1995; ISBN 978-0-412-35530-1. [Google Scholar]
- Lamberti, G.A.; Moore, J.W. Aquatic Insects as Primary Consumers. In The Ecology of Aquatic Insects; Resh, V.H., Rosneberg, D.M., Eds.; Greenwood Press: New York, NY, USA, 1984; pp. 164–195. [Google Scholar]
- Doretto, A.; Piano, E.; Larson, C.E. The River Continuum Concept: Lessons from the Past and Perspectives for the Future. Can. J. Fish. Aquat. Sci. 2020, 77, 1853–1864. [Google Scholar] [CrossRef]
- Jones, N.E. Incorporating Lakes within the River Discontinuum: Longitudinal Changes in Ecological Characteristics in Stream–Lake Networks. Can. J. Fish. Aquat. Sci. 2010, 67, 1350–1362. [Google Scholar] [CrossRef]
- Dąbrowski, J.; Więcaszek, B. Analysis of Fish Species Composition in Miazga—A Stream Blocked with a Small Dam Reservoir (Pilica River Basin, Central Poland). Folia Pomeranae Univ. Technol. Stetin. Aliment. Piscaria Et Zootech. 2018, 345, 27–44. [Google Scholar] [CrossRef]
- Vilbaste, S.; Pall, P.; Haldna, M.; Nõges, P.; Piirsoo, K.; Nõges, T. How the Catchment-River-Lake Continuum Shapes the Downstream Water Quality. J. Limnol. 2024, 83, 2167. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V. Revisiting the Serial Discontinuity Concept. Regul. Rivers Res. Manag. 2001, 17, 303–310. [Google Scholar] [CrossRef]
- Hornbach, D.J.; Sietman, B.E.; William Bouchard, R., Jr. The Relationship between Stream Size and Life-History Traits in Freshwater Mussels: An Examination of the Host-Habitat Continuum Concept. Hydrobiologia 2024, 851, 4419–4437. [Google Scholar] [CrossRef]
- Koszałka, J.; Jabłońska-Barna, I. Aquatic Macroinvertebrate Biodiversity in Freshwaters in Northeastern Poland. In Polish River Basins and Lakes; Korzeniewska, E., Harnisz, M., Eds.; Springer: Cham, Switzerland, 2020; Volume II, pp. 103–125. [Google Scholar]
- Krepski, T.; Sługocki, Ł.; Goździk, I.; Humiczewski, M.; Popko, R.; Czerniawski, R. Spatial Distribution Patterns of Zooplankton and Macroinvertebrates in a Small River under Strong Anthropogenic Pressure. Water 2024, 16, 262. [Google Scholar] [CrossRef]
- Kędzior, R.; Kłonowska-Olejnik, M.; Dumnicka, E.; Woś, A.; Wyrębek, M.; Książek, L.; Grela, J.; Madej, P.; Skalski, T. Macroinvertebrate Habitat Requirements in Rivers: Overestimation of Environmental Flow Calculations in Incised Rivers. Hydrol. Earth Syst. Sci. 2022, 26, 4109–4124. [Google Scholar] [CrossRef]
- Dorava, J.M.; Milner, A.M. Role of Lake Regulation on Glacier-Fed Rivers in Enhancing Salmon Productivity: The Cook Inlet Watershed, South-Central Alaska, USA. Hydrol. Process. 2000, 14, 3149–3159. [Google Scholar] [CrossRef]
- Luecke, C.; MacKinnon, P. Landscape Effects on Growth of Age-0 Arctic Grayling in Tundra Streams. Trans. Am. Fish. Soc. 2008, 137, 236–243. [Google Scholar] [CrossRef]
- Brysiewicz, A.; Czerniejewski, P.; Dąbrowski, J.; Formicki, K. Characterisation of Benthic Macroinvertebrate Communities in Small Watercourses of the European Central Plains Ecoregion and the Effect of Different Environmental Factors. Animals 2022, 12, 606. [Google Scholar] [CrossRef]
- Pander, J.; Habersetzer, L.; Casas-Mulet, R.; Geist, J. Effects of Stream Thermal Variability on Macroinvertebrate Community: Emphasis on Native Versus Non-Native Gammarid Species. Front. Environ. Sci. 2022, 10, 869396. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in Tropical Rain Forests and Coral Reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef]
- Beauger, A.; Lair, N.; Reyes-Marchant, P.; Peiry, J.-L. The Distribution of Macroinvertebrate Assemblages in a Reach of the River Allier (France), in Relation to Riverbed Characteristics. Hydrobiologia 2006, 571, 63–76. [Google Scholar] [CrossRef]
- Golovatyuk, L.V.; Nazarova, L.B.; Kalioujnaia, I.J.; Grekov, I.M. Taxonomic Composition and Salinity Tolerance of Macrozoobenthos in Small Rivers of the Southern Arid Zone of the East European Plain. Biology 2023, 12, 1271. [Google Scholar] [CrossRef]
- Leitner, P.; Graf, W.; Hauer, C. Ecological Assessment of High Sediment Loads Based on Macroinvertebrate Communities in the Bohemian Massif in Austria—A Sensitivity Analysis. Limnologica 2023, 98, 125941. [Google Scholar] [CrossRef]
- Jansen, W.; Böhmer, J.; Kappus, B.; Beiter, T.; Breitinger, B.; Hock, C. Benthic Invertebrate and Fish Communities as Indicators of Morphological Integrity in the Enz River (South-West Germany). Hydrobiologia 2000, 422, 331–342. [Google Scholar] [CrossRef]
- Varadinova, E.; Sakelarieva, L.; Park, J.; Ivanov, M.; Tyufekchieva, V. Characterisation of Macroinvertebrate Communities in Maritsa River (South Bulgaria)—Relation to Different Environmental Factors and Ecological Status Assessment. Diversity 2022, 14, 833. [Google Scholar] [CrossRef]
- Park, J.; Sakelarieva, L.; Varadinova, E.; Evtimova, V.; Vidinova, Y.; Tyufekchieva, V.; Georgieva, G.; Ihtimanska, M.; Todorov, M. Taxonomic Composition and Dominant Structure of the Macrozoobenthos in the Maritsa River and Some Tributaries, South Bulgaria. Acta Zool. Bulg. 2023, 16, 61–74. [Google Scholar]
- Nautiyal, P.; Mishra, A.S. Role of Depth, Habitat and Current Velocity on Distribution of Benthic Macroinvertebrate Fauna in the Himalayan River, Ramganga. Proc. Zool. Soc. 2022, 75, 349–360. [Google Scholar] [CrossRef]
- Cristiano, G.; Di Sabatino, A. How Does Water Current Velocity Affect Invertebrate Community and Leaf-litter Breakdown in a Physicochemically Stable Freshwater Ecosystem? An Experimental Study in Two Nearby Reaches (Erosional vs. Depositional) of the Vera Spring (Central Italy). Ecohydrology 2024, 17, e2532. [Google Scholar] [CrossRef]
- Thakur, Y.; Grover, A.; Sinha, R. Differential Distribution of Macroinvertebrate Associated with Water Quality. World Water Policy 2023, 9, 84–112. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Joniak, T.; Trawiński, A. Assessment of Running Water Quality Based on Zoobenthos Communities—Biotic Index BMWP-PL for the Kłodawa River. Ekol. I Tech. 2011, 19, 132–138. [Google Scholar]
- Croijmans, L.; De Jong, J.F.; Prins, H.H.T. Oxygen Is a Better Predictor of Macroinvertebrate Richness than Temperature—A Systematic Review. Environ. Res. Lett. 2021, 16, 023002. [Google Scholar] [CrossRef]
- Pineda-Pineda, J.J.; Muñoz-Rojas, J.; Morales-García, Y.E.; Hernández-Gómez, J.C.; Sigarreta, J.M. Biomathematical Model for Water Quality Assessment: Macroinvertebrate Population Dynamics and Dissolved Oxygen. Water 2022, 14, 2902. [Google Scholar] [CrossRef]
- Vagheei, H.; Laini, A.; Vezza, P.; Palau-Salvador, G.; Boano, F. Ecohydrologic Modelling Using Nitrate, Ammonium, Phosphorus, and Macroinvertebrates as Aquatic Ecosystem Health Indicators of Albaida Valley (Spain). J. Hydrol. Reg. Stud. 2022, 42, 101155. [Google Scholar] [CrossRef]
- Mathers, K.L.; Armitage, P.D.; Hill, M.; McKenzie, M.; Pardo, I.; Wood, P.J. Seasonal Variability of Lotic Macroinvertebrate Communities at the Habitat Scale Demonstrates the Value of Discriminating Fine Sediment Fractions in Ecological Assessments. Ecol. Evol. 2023, 13, e10564. [Google Scholar] [CrossRef]
- Wiggins, G.B. Caddisflies: The Underwater Architects, 1st ed.; University of Toronto Press: Toronto, ON, Canada, 2005. [Google Scholar]
- Gao, Y.; Rong, L.; Zhao, X.; Wang, X.; Lin, C.; Cao, L.; Yang, H. Short-Term Effects of Substrate Surface Structure on Macroinvertebrates Community Structure and Functional Characteristics. Ecol. Eng. 2024, 201, 107215. [Google Scholar] [CrossRef]
- Allan, J.D.; Castrillo, M.M.; Capps, K.A. Stream Ecology: Structure and Function of Running Waters, 3rd ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Lamberti, G.A.; Gregory, S.V. CPOM Transport, Retention, and Measurement. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Elsevier: Burlington, MA, USA, 2007; pp. 273–289. [Google Scholar]
- Minshall, G.W. Aquatic Insects-Substratum Relationship. In The Ecology of Aquatic insects; Resh, V.H., Rosenberg, D.M., Eds.; Praeger Publisher: New York, NY, USA, 1984; pp. 358–400. [Google Scholar]
- Curtean-Bănăduc, A.; Olosutean, H.; Bănăduc, D. Influence of Environmental Variables on the Structure and Diversity of Ephemeropteran Communities: A Case Study of the Timiş River, Romania. Acta Zool. Bulg. 2016, 68, 215–224. [Google Scholar]
- Vidinova, Y.; Russev, B. Distribution and Ecology of the Representatives of Some Ephemeropteran Families in Bulgaria. In Ephemeroptera & Plecoptera: Biology-Ecology-Systematics; Landolt, P., Sartori, M., Eds.; MTL: Fribourg, Switzerland, 1997; pp. 139–146. [Google Scholar]
- Romito, A.M.; Eggert, S.L.; Diez, J.M.; Wallace, J.B. Effects of Seasonality and Resource Limitation on Organic Matter Turnover by Chironomidae (Diptera) in Southern Appalachian Headwater Streams. Limnol. Oceanogr. 2010, 55, 1083–1092. [Google Scholar] [CrossRef]
- Hirabayashi, K.; Wotton, R.S. Organic Matter Processing by Chironomid Larvae (Diptera: Chironomidae). Hydrobiologia 1998, 382, 151–159. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hakenkamp, C.C. The Functional Role of Burrowing Bivalves in Freshwater Ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef]
- Straka, M.; Syrovátka, V.; Helešic, J. Temporal and Spatial Macroinvertebrate Variance Compared: Crucial Role of CPOM in a Headwater Stream. Hydrobiologia 2012, 686, 119–134. [Google Scholar] [CrossRef]
- Kovács, K.; Selmeczy, G.B.; Kucserka, T.; Abdel-Hameid, N.-A.H.; Padisák, J. The Effect of Stream Bed Morphology on Shredder Abundance and Leaf-Litter Decomposition in Hungarian Midland Streams. Pol. J. Environ. Stud. 2011, 20, 1547–1556. [Google Scholar]
- Gerhardt, A.; Bloor, M.; Mills, C.L. Gammarus: Important Taxon in Freshwater and Marine Changing Environments. Int. J. Zool. 2011, 2011, 524276. [Google Scholar] [CrossRef]
- Patrick, C.J. The Effect of Shredder Community Composition on the Production and Quality of Fine Particulate Organic Matter. Front. Freshw. Sci. 2013, 32, 1026–1035. [Google Scholar] [CrossRef]
- Piechocki, A.; Wawrzyniak-Wydrowska, B. Guide to Freshwater and Marine Mollusca of Poland, 1st ed.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2016; ISBN 978-83-7986-109-5. [Google Scholar]
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; De Regge, N. Temperature and Food Sources Influence Subadult Development and Blood-Feeding Response of Culicoides obsoletus (Sensu Lato) under Laboratory Conditions. Parasites Vectors 2021, 14, 300. [Google Scholar] [CrossRef]
- Becquet, J.; Lamouroux, N.; Condom, T.; Gouttevin, I.; Forcellini, M.; Launay, B.; Rabatel, A.; Cauvy-Fraunié, S. Macroinvertebrate Distribution Associated with Environmental Variables in Alpine Streams. Freshw. Biol. 2022, 67, 1815–1831. [Google Scholar] [CrossRef]
- Lock, K.; Adriaens, T.; Goethals, P. Effect of Water Quality on Blackflies (Diptera: Simuliidae) in Flanders (Belgium). Limnologica 2014, 44, 58–65. [Google Scholar] [CrossRef]
- Sługocki, Ł.; Czerniawski, R. Water Quality of the Odra (Oder) River before and during the Ecological Disaster in 2022: A Warning to Water Management. Sustainability 2023, 15, 8594. [Google Scholar] [CrossRef]
- Milner, V.S.; Yarnell, S.M.; Peek, R.A. The Ecological Importance of Unregulated Tributaries to Macroinvertebrate Diversity and Community Composition in a Regulated River. Hydrobiologia 2019, 829, 291–305. [Google Scholar] [CrossRef]
- Hsu, C.; Kang, J.; Chang, Y.; Yeh, L.; Chen, C.; Hsieh, H.; Lin, H. Reliable Data From Community-Based Citizen Science for Coastal Biodiversity Research in the Taoyuan Algal Reef, Taiwan. Aquat. Conserv. 2025, 35, e70138. [Google Scholar] [CrossRef]
- Hegarty, S.; Hayes, A.; Regan, F.; Bishop, I.; Clinton, R. Using Citizen Science to Understand River Water Quality While Filling Data Gaps to Meet United Nations Sustainable Development Goal 6 Objectives. Sci. Total Environ. 2021, 783, 146953. [Google Scholar] [CrossRef]
Site | Silt (<0.1 mm) | Sand (0.1–2.0 mm) | Gravel (>2 mm) |
---|---|---|---|
1 | 6.331 | 89.761 | 3.909 |
2 | 3.688 | 72.563 | 23.750 |
3 | 2.862 | 95.177 | 1.960 |
4 | 0.209 | 42.354 | 57.437 |
5 | 3.742 | 87.401 | 8.857 |
6 | 0.227 | 97.442 | 2.332 |
7 | 0.000 | 46.375 | 53.625 |
8 | 0.347 | 82.118 | 17.535 |
9 | 0.096 | 70.369 | 29.536 |
10 | 1.495 | 97.152 | 1.353 |
11 | 1.271 | 84.699 | 14.030 |
12 | 0.535 | 97.147 | 2.318 |
13 | 0.242 | 81.759 | 17.998 |
14 | 0.112 | 33.614 | 66.273 |
15 | 0.506 | 96.538 | 2.956 |
16 | 0.087 | 81.047 | 18.866 |
17 | 0.059 | 73.149 | 26.792 |
18 | 0.224 | 98.004 | 1.772 |
Feature | Differentiating Variable | K-W χ2 | p-Value | Dunn Test—p-Value for Parts of River | ||
---|---|---|---|---|---|---|
Lower-Medium | Medium-Upper | Upper-Lower | ||||
BOD5 [mg dm−3] | River parts | 0.286 | 0.867 | - | - | - |
Chlorophyl A | 3.654 | 0.161 | - | - | - | |
EC [µS cm−1] | 11.262 | 0.004 | 0.063 | 0.116 | 0.002 * | |
Flow [cm3 s−1] | 10.865 | 0.004 | 0.079 | 0.108 | 0.002 * | |
Gravel [%] | 0.465 | 0.793 | - | - | - | |
NH4 [mg dm−3] | 6.229 | 0.044 | 0.247 | 0.224 | 0.021 * | |
NO3 [mg dm−3] | 7.012 | 0.03 | 0.704 | 0.051 | 0.013 * | |
O2 [mg dm−3] | 7.811 | 0.022 | 0.091 | 0.307 | 0.012 * | |
P-PO4 [mg dm−3] | 5.051 | 0.08 | 0.928 | 0.039 | 0.106 | |
pH | 8.260 | 0.016 | 0.429 | 0.052 | 0.006 * | |
Sand [%] | 0.128 | 0.938 | - | - | - | |
Silt [%] | 6.490 | 0.039 | 0.663 | 0.069 | 0.017 * | |
Suspension [mg dcm−3] | 6.243 | 0.044 | 0.082 | 0.044 | 0.728 | |
Temperature [°C] | 3.297 | 0.192 | - | - | - | |
Velocity [cm s−1] | 6.167 | 0.046 | 0.188 | 0.301 | 0.024 * |
Site | Dominance_D | Taxa | A [%] | Ni |
---|---|---|---|---|
1 | 0.400 | Chironomidae | 62.9 | 127 |
2 | 0.263 | Sphaeriidae | 42.4 | 28 |
3 | 0.149 | Sphaeriidae | 35.7 | 20 |
4 | 0.411 | Chironomidae | 59.6 | 1070 |
5 | 0.665 | Chironomidae ** | 81.5 | 369 |
6 | 0.780 | Chironomidae ** | 88.1 | 275 |
7 | 0.248 | Chironomidae | 42.9 | 70 |
8 | 0.213 | Caenidae | 37.2 | 35 |
9 | 0.205 | Planorbidae | 30.9 | 129 |
10 | 0.322 | Sphaeriidae | 45.5 | 5 |
11 | 0.430 | Gammaridae * | 64.3 | 162 |
12 | 0.482 | Chironomidae * | 67.4 | 227 |
13 | 0.352 | Sphaeriidae | 60.0 | 9 |
14 | 0.353 | Bithyniidae | 55.0 | 204 |
15 | 0.248 | Tubificidae | 32.9 | 24 |
16 | 0.405 | Gammaridae | 58.4 | 180 |
17 | 0.433 | Gammaridae * | 63.3 | 209 |
18 | 0.413 | Gammaridae * | 61.4 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhadji, N.; Dąbrowski, J.; Brysiewicz, A.; Czerniejewski, P.; Hałasa, Ł. Environmental Drivers of Macrozoobenthos Structure Along a Discontinuous Tributary of the Oder River (North-Western Poland). Water 2025, 17, 3005. https://doi.org/10.3390/w17203005
Benhadji N, Dąbrowski J, Brysiewicz A, Czerniejewski P, Hałasa Ł. Environmental Drivers of Macrozoobenthos Structure Along a Discontinuous Tributary of the Oder River (North-Western Poland). Water. 2025; 17(20):3005. https://doi.org/10.3390/w17203005
Chicago/Turabian StyleBenhadji, Nadhira, Jarosław Dąbrowski, Adam Brysiewicz, Przemysław Czerniejewski, and Łukasz Hałasa. 2025. "Environmental Drivers of Macrozoobenthos Structure Along a Discontinuous Tributary of the Oder River (North-Western Poland)" Water 17, no. 20: 3005. https://doi.org/10.3390/w17203005
APA StyleBenhadji, N., Dąbrowski, J., Brysiewicz, A., Czerniejewski, P., & Hałasa, Ł. (2025). Environmental Drivers of Macrozoobenthos Structure Along a Discontinuous Tributary of the Oder River (North-Western Poland). Water, 17(20), 3005. https://doi.org/10.3390/w17203005