Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area Overview
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Traditional Water Chemistry Methods
2.3.2. Analysis and Classification of Groundwater Chemical Composition
2.3.3. Unsupervised Machine Learning
2.3.4. Positive Matrix Factorization (PMF) Source Analysis
3. Results
3.1. Statistical Characteristics of Groundwater Chemical Types and Content
3.2. Analysis of Groundwater Chemical Composition Sources
3.2.1. Groundwater Chemical Types
3.2.2. Equilibrium of Ions and Molecules
3.2.3. Ion Ratio Analysis
3.2.4. SOM Clustering Results
3.2.5. PMF Source Analysis
4. Discussion
4.1. Preliminary Analysis of Ion Sources
4.2. Analysis of SOM Clustering Results
4.3. Factors in the PMF Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SOM | Self-Organizing Map |
PMF | Positive Matrix Factorization |
EF | Error Fraction |
DBI | Davies-Bouldin Index |
References
- Foroushani, T.S.; Balali, H.; Movahedi, R.; Kurban, A.; Varnik, R.; Stamenkovska, I.J.; Azadi, H. Importance of good groundwater governance in economic development: The case of western Iran. Groundw. Sustain. Dev. 2023, 21, 100892. [Google Scholar] [CrossRef]
- Li, D.; Tian, P.; Luo, Y.; Dong, B.; Cui, Y.; Khan, S. Importance of stopping groundwater irrigation for balancing agriculture and wetland ecosystem. Ecol. Indic. 2021, 127, 107747. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, L.; Hong, M. Nitrobenzene contamination of groundwater in a petrochemical industry site. Front. Environ. Sci. Eng. 2019, 13, 29. [Google Scholar] [CrossRef]
- Lee, D.; Murphy, H.M. Private Wells and Rural Health: Groundwater Contaminants of Emerging Concern. Curr. Environ. Health Rep. 2020, 7, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.L.; Liu, X.J.; Bao, X.Y.; Zhang, X.C.; Yin, B.Z.; Wang, W.T.; Wang, Y.D.; Zhen, W.C. Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain. Agric. Water Manag. 2024, 294, 108729. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; Bruns, B. Crafting Combinations to Govern Groundwater: Knowledge, Motivation, and Agency. Int. J. Commons 2024, 18, 585–600. [Google Scholar] [CrossRef]
- Abanyie, S.K.; Apea, O.B.; Abagale, S.A.; Amuah, E.E.Y.; Sunkari, E.D. Sources and factors influencing groundwater quality and associated health implications: A review. Emerg. Contam. 2023, 9, 100207. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.L.; Liu, Z.Q.; Ma, J.B.; Yang, F.; Guo, H.M.; Fu, Q. How Human Activities Affect Groundwater Storage. Res. Sci. Partn. J. 2024, 7, 0369. [Google Scholar] [CrossRef]
- Kastali, F.; Meddi, M.; Boufekane, A.; Longobardi, A. Integrated modeling of surface water and groundwater interactions in the Eastern Mitidja Plain, North Algeria: Investigating the impact of human activities and climate change. J. Water Clim. Change 2024, 15, 5570–5586. [Google Scholar] [CrossRef]
- Arsenault, R.; Martel, J.L.; Brunet, F.; Brissette, F.; Mai, J.L.E. Continuous streamflow prediction in ungauged basins: Long short-term memory neural networks clearly outperform traditional hydrological models. Hydrol. Earth Syst. Sc. 2023, 27, 139–157. [Google Scholar] [CrossRef]
- Liu, C.; Jia, X.; Shao, M. Application and Prospect of Geophysical Methods in Study of Soil Hydrological Processes. Soils 2022, 54, 24–31. [Google Scholar]
- Hussein, E.E.; Derdour, A.; Zerouali, B.; Almaliki, A.; Wong, Y.J.; los Santos, M.B.D.; Ngoc, P.M.; Hashim, M.A.; Elbeltagi, A. Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water 2024, 16, 264. [Google Scholar] [CrossRef]
- Boo, K.B.W.; El-Shafie, A.; Othman, F.; Khan, M.M.H.; Birima, A.H.; Ahmed, A.N. Groundwater level forecasting with machine learning models: A review. Water Res. 2024, 252, 121249. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, P.; Su, F.; Wang, D.; Ren, X. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environ. Pollut. 2022, 298, 118852. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Sun, J.; Chen, J.; Sun, F.; Li, X.; Fu, Q. Suitability Zoning for Groundwater Source Heat Pump Based on Adaptive BPNN-GIS Method. Geoscience 2023, 37, 963–971. [Google Scholar]
- Krishan, G.; Bhagwat, A.; Sejwal, P.; Yadav, B.K.; Kansal, M.L.; Bradley, A.; Singh, S.; Kumar, M.; Sharma, L.M.; Muste, M. Assessment of groundwater salinity using principal component analysis (PCA): A case study from Mewat (Nuh), Haryana, India. Environ. Monit. Assess. 2023, 195, 37. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.H.; Karmaker, S.C.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere 2021, 263, 128339. [Google Scholar] [CrossRef]
- Jiang, W.; Meng, L.; Liu, F.; Sheng, Y.; Chen, S.; Yang, J.; Mao, H.; Zhang, J.; Zhang, Z.; Ning, H. Distribution, source investigation, and risk assessment of topsoil heavy metals in areas with intensive anthropogenic activities using the positive matrix factorization (PMF) model coupled with self-organizing map (SOM). Environ. Geochem. Health 2023, 45, 6353–6370. [Google Scholar] [CrossRef]
- Lv, X.; Li, C.; Wang, H.; Yang, S.; Wang, S.; Yang, C.; Teng, F.; Zhao, J.; Xu, X.; Zhang, H.; et al. Source apportionment and risk quantification of soil heavy metals using SOM-PMF model: Implications for ecological and human health management. Environ. Monit. Assess. 2025, 197, 868. [Google Scholar] [CrossRef]
- Kang, X.Q.; Niu, Y.; Yu, H.; Gou, P.; Hou, Q.Y.; Lu, X.F.; Wu, Y.L. Effect of rainfall-runoff process on sources and transformations of nitrate using a combined approach of dual isotopes, hydrochemical and Bayesian model in the Dagang River basin. Sci. Total Environ. 2022, 837, 155674. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Zhang, Z.; Li, J.X.; Hou, L.; Liu, J.Q.; Wang, Y.B. Research on the Hydrological Variation Law of the Dawen River, a Tributary of the Lower Yellow River. Agronomy 2022, 12, 1719. [Google Scholar] [CrossRef]
- Ding, M.; Zhao, W.; Xu, X.; Tang, J.; Fan, T.; Zhang, L.; Zhang, Z.; Peng, S.; Xu, L. Characteristics of Organochlorine Pollution in the Topsoil of the Dawen River Watershed and Potential Risk Assessment in China. Appl. Ecol. Environ. Res. 2020, 18, 159–172. [Google Scholar] [CrossRef]
- Zhao, Q.; Gao, Q.; Zou, C.H.; Yao, T.; Li, X.M. Impact of Changes in Land Use and Climate on the Runoff Based on Swat Model in Dawen River Basin, China. Appl. Ecol. Environ. Res. 2019, 17, 2849–2863. [Google Scholar] [CrossRef]
- Wei, S.M.; Zhang, Y.X.; Cai, Z.Z.; Bi, D.W.; Wei, H.H.; Zheng, X.F.; Man, X.B. Evaluation of groundwater quality and health risk assessment in Dawen River Basin, North China. Environ. Res. 2025, 264, 120292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.; Wan, X.; Jia, S.; Mao, B. Evolution origin analysis and health risk assessment of groundwater environment in a typical mining area: Insights from water-rock interaction and anthropogenic activities. Environ. Res. 2024, 252, 118792. [Google Scholar] [CrossRef] [PubMed]
- GB/T 14848-2017; Standard for Groundwater Quality. Standardization Administration of China (SAC/TC 93): Beijing, China, 2017.
- GB 5749-2022; Standards for Drinking Water Quality. National Health Commission of the People’s Republic of China: Beijing, China, 2022.
- Razack, M.; Dazy, J. Hydrochemical Characterization of Groundwater Mixing in Sedimentary and Metamorphic Reservoirs with Combined Use of Piper Principle and Factor-Analysis. J. Hydrol. 1990, 114, 371–393. [Google Scholar] [CrossRef]
- Hoaghia, M.A.; Roman, C.; Tanaselia, C.; Ristoiu, D. Groundwater chemistry rendering using Durov, Piper and ion balanced diagrams. Case study: The northern part of Sibiu county (vol 8, pg 93, 2013). Studia Univ. Babes-Bolyai Chem. 2016, 61, 319. [Google Scholar]
- Wu, J. Classification of Groundwater by Chemical Composition and Systematic Organization of Water Analysis Data. Hydrogeol. Eng. Geol. 1958, 31–35. Available online: https://xueshu.baidu.com/ndscholar/browse/detail?paperid=b466e33fcaaa3ff5e822002abfcb2f43&site=… (accessed on 7 October 2025).
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Mondal, N.C.; Singh, V.P.; Singh, V.S.; Saxena, V.K. Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J. Hydrol. 2010, 388, 100–111. [Google Scholar] [CrossRef]
- Zhang, Z.; Yi, L.X.; Liu, C.Y.; Li, S.C.; Liu, N.; Ren, L. Source apportionment of groundwater contamination and spatial variability in the Bohai Sea region (China). Mar. Pollut. Bull. 2025, 220, 118392. [Google Scholar] [CrossRef]
- Cao, Z.Z.; Zhang, S.Y.; Du, F.; Ma, D.; Li, Z.H.; Huang, C.H.; Wang, W.Q. Water Inrush Mechanism and Variable Mass Seepage of Karst Collapse Columns Based on a Nonlinear Coupling Mechanical Model. Mine Water Environ. 2025, 44, 259–274. [Google Scholar] [CrossRef]
Type | Water-Bearing Rock Formation | Distribution | |
---|---|---|---|
Geological Time Scale | Main Rock Types | ||
pore water in loose rock types | Quaternary period | fine sand, medium sand, coarse sand, gravel | plains in front of mountains, alluvial plains, river valleys between mountains, rift basins, etc. |
porous fracture water in clastic rocks | Paleogene, Cretaceous, Jurassic, Permian, Carboniferous | shale, sandstone, conglomerate, limestone | distributed in the center and peripheral areas of the basin |
carbonate rock fissure karst water | Cambrian–Ordovician | mixed sandstone, muddy mixed sandstone | mostly distributed in monoclinic form in the northern part of each block uplift and the northern edge of the basin |
bedrock fissure water | Paleozoic Taishan Rock Group | igneous rocks, metamorphic rocks | around the basin |
Indicators | MIN | MAX | MED | MEAN | STD | CV | Reference | |
---|---|---|---|---|---|---|---|---|
ρ/(mg/L) | Ca2+ | 28.14 | 607.43 | 186.38 | 205.51 | 100.25 | 0.49 | / |
Mg2+ | 4.27 | 89.95 | 33.71 | 36.37 | 15.45 | 0.42 | / | |
Na+ | 9.44 | 533.92 | 60.73 | 74.97 | 68.36 | 0.91 | 200 | |
K+ | 0.23 | 31.58 | 1.83 | 2.88 | 4.13 | 1.43 | / | |
Sr | 0.13 | 4.74 | 0.78 | 0.97 | 0.69 | 0.71 | / | |
Ba | 0.05 | 0.32 | 0.12 | 0.12 | 0.05 | 0.41 | / | |
F− | 0.05 | 1.45 | 0.22 | 0.27 | 0.20 | 0.75 | 1 | |
Cl− | 11.35 | 1745.27 | 183.59 | 211.03 | 225.20 | 1.07 | 250 | |
SO42− | 20.27 | 465.86 | 197.01 | 205.93 | 99.46 | 0.48 | 250 | |
HCO3− | 77.68 | 525.81 | 185.23 | 196.88 | 74.96 | 0.38 | / | |
NO2− | 0.00 | 0.08 | 0.01 | 0.02 | 0.02 | 0.97 | 1 | |
NO3− | 1.16 | 710.11 | 177.28 | 181.53 | 121.51 | 0.67 | 44 | |
TH | 87.84 | 1887.34 | 601.04 | 663.00 | 294.23 | 0.44 | 450 | |
TDS | 150.37 | 3524.88 | 957.20 | 1039.25 | 477.52 | 0.46 | 1000 | |
CODMn | 0.11 | 6.04 | 0.78 | 1.03 | 0.83 | 0.81 | 3 | |
pH | 7.40 | 8.48 | 7.89 | 7.92 | 0.20 | 0.03 | 6.5–8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhao, Z.; An, H.; Han, L.; Li, M.; Wang, Z.; Wang, X.; Shi, Z. Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis. Water 2025, 17, 2924. https://doi.org/10.3390/w17202924
Wang X, Zhao Z, An H, Han L, Li M, Wang Z, Wang X, Shi Z. Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis. Water. 2025; 17(20):2924. https://doi.org/10.3390/w17202924
Chicago/Turabian StyleWang, Xinqi, Zhenhua Zhao, Hongyan An, Lin Han, Mingming Li, Zihao Wang, Xinfeng Wang, and Zheming Shi. 2025. "Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis" Water 17, no. 20: 2924. https://doi.org/10.3390/w17202924
APA StyleWang, X., Zhao, Z., An, H., Han, L., Li, M., Wang, Z., Wang, X., & Shi, Z. (2025). Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis. Water, 17(20), 2924. https://doi.org/10.3390/w17202924