Endemic and Invasive Species: A History of Distributional Trends in the Fish Fauna of the Lower New River Drainage
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Arthington, A.H.; Dulvy, N.K.; Gladstone, W.; Winfield, I.J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 838–857. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the curve of global freshwater biodiversity loss: An emergency recovery plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.R.; Williams, J.D.; Williams, J.E. Extinctions of North American fishes during the past century. Fisheries 1989, 14, 22–38. [Google Scholar] [CrossRef]
- Moyle, P.B.; Leidy, R.A. Loss of biodiversity in aquatic ecosystems: Evidence from fish faunas. In Conservation Biology: The Theory and Practice of Nature Conservation Preservation and Management; Fiedler, P.L., Jain, S.K., Eds.; Springer: Boston, MA, USA, 1992; pp. 127–169. [Google Scholar]
- Allan, J.D.; Flecker, A.S. Biodiversity conservation in running waters. BioScience 1993, 43, 32–43. [Google Scholar] [CrossRef]
- Angermeier, P.L. Ecological attributes of extinction-prone species: Loss of freshwater fishes of Virginia. Conserv. Biol. 1995, 9, 143–158. [Google Scholar] [CrossRef]
- Warren, M.L., Jr.; Burr, B.M. Status of freshwater fishes of the United States: Overview of an imperiled fauna. Fisheries 1994, 19, 6–18. [Google Scholar] [CrossRef]
- Warren, M.L., Jr.; Burr, B.M.; Walsh, S.J.; Bart, H.L., Jr.; Cashner, R.C.; Etnier, D.A.; Freeman, B.J.; Kuhajda, B.R.; Mayden, R.L.; Robison, H.W.; et al. Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States. Fisheries 2000, 25, 7–31. [Google Scholar] [CrossRef]
- Utz, R.M.; Hilderbrand, R.H.; Raesly, R.L. Regional differences in patterns of fish species loss with changing land use. Biol. Conserv. 2010, 143, 688–699. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Gozlan, R.E.; Jarić, I.; Teletchea, F.; Leroy, B. Freshwater fish invasions: A comprehensive review. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 427–456. [Google Scholar] [CrossRef]
- Didham, R.K.; Tylianakis, J.M.; Hutchison, M.A.; Ewers, R.M.; Gemmell, N.J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 2005, 20, 470–474. [Google Scholar] [CrossRef]
- Dextrase, A.J.; Mandrak, N.E. Impacts of alien invasive species on freshwater fauna at risk in Canada. Biol. Invasions 2006, 8, 13–24. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D.; Merritt, D.M.; Pepin, D.M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl. Acad. Sci. USA 2007, 104, 5732–5737. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.K.; Taylor, W.W.; Kinnison, M.T.; Sullivan, S.M.P.; Weber, M.J.; Melstrom, R.T.; Venturelli, P.A.; Wuellner, M.R.; Newman, R.M.; Hartman, K.J.; et al. Threats to freshwater fisheries in the United States: Perspectives and investments of state fisheries administrators and agricultural experiment station directors. Fisheries 2019, 44, 276–287. [Google Scholar] [CrossRef]
- Meijer, C.G.; Hickford, M.J.; Gray, D.P.; Schiel, D.R. Disentangling the simultaneous effects of habitat degradation and introduced species on naturally depauperate riverine fish communities. Front. Freshw. Sci. 2024, 2, 1398975. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Strayer, D.L. Invasion success of vertebrates in Europe and North America. Proc. Natl. Acad. Sci. USA 2005, 102, 7198–7202. [Google Scholar] [CrossRef] [PubMed]
- Lodge, D.M.; Williams, S.; MacIsaac, H.J.; Hayes, K.R.; Leung, B.; Reichard, S.; Mack, R.N.; Moyle, P.B.; Smith, M.; Andow, D.A.; et al. Biological invasions: Recommendations for US policy and management. Ecol. Appl. 2006, 16, 2035–2054. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef]
- Ricciardi, A. Invasive species. In Ecological Systems: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 161–178. [Google Scholar]
- Haubrock, P.J.; Ahmed, D.A.; Cuthbert, R.N.; Stubbington, R.; Domisch, S.; Marquez, J.R.; Beidas, A.; Amatulli, G.; Kiesel, J.; Shen, L.Q.; et al. Invasion impacts and dynamics of a European-wide introduced species. Glob. Change Biol. 2022, 28, 4620–4632. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.; Ahmed, D.A.; Balzani, P.; Cuthbert, R.N.; Haubrock, P.J. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. Sci. Total Environ. 2023, 872, 161818. [Google Scholar] [CrossRef]
- Crooks, J.A.; Soulé, M.E. Lag times in population explosions of invasive species: Causes and implications. In Invasive Species and Biodiversity Management; Sandlund, O.T., Schei, P.J., Viken, Å., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1999; pp. 103–125. [Google Scholar]
- Alcaraz, C.; Vila-Gispert, A.; García-Berthou, E. Profiling invasive fish species: The importance of phylogeny and human use. Divers. Distrib. 2005, 11, 289–298. [Google Scholar] [CrossRef]
- Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Dawson, W.; Schlaepfer, D.; Jeschke, J.M.; Fischer, M. Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett. 2010, 13, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, I.A.M.; Bernaerts, K.; Dens, E.J.; Geeraerd, A.H.; Van Impe, J.F. Predictive modelling of the microbial lag phase: A review. Int. J. Food Microbiol. 2004, 94, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microb. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Tjørve, K.M.; Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- Crooks, J.A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 2005, 12, 316–329. [Google Scholar] [CrossRef]
- Catford, J.A.; Vesk, P.A.; Richardson, D.M.; Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 2012, 18, 44–62. [Google Scholar] [CrossRef]
- Moyle, P.B.; Light, T. Biological invasions of fresh water: Empirical rules and assembly theory. Biol. Conserv. 1996, 78, 149–161. [Google Scholar] [CrossRef]
- Deacon, A.E.; Ramnarine, I.W.; Magurran, A.E. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 2011, 6, e24416. [Google Scholar] [CrossRef]
- Stauffer, J.R., Jr.; Chirwa, E.R.; Jere, W.; Konings, A.F.; Tweddle, D.; Weyl, O. Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae): A threat to native fishes of Lake Malawi? Biol. Invasions 2022, 24, 1585–1597. [Google Scholar] [CrossRef]
- Scott, M.C.; Helfman, G.S. Native invasions, homogenization, and the mismeasure of integrity of fish assemblages. Fisheries 2001, 26, 6–15. [Google Scholar] [CrossRef]
- Rahel, F.J. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 2002, 33, 291–315. [Google Scholar] [CrossRef]
- Sowersby, W.; Thompson, R.M.; Wong, B.B.M. Invasive predator influences habitat preferences in a freshwater fish. Environ. Biol. Fishes 2016, 99, 187–193. [Google Scholar] [CrossRef]
- Hargrove, J.S.; Weyl, O.L.; Austin, J.D. Reconstructing the introduction history of an invasive fish predator in South Africa. Biol. Invasions 2017, 19, 2261–2276. [Google Scholar] [CrossRef]
- Mills, M.D.; Rader, R.B.; Belk, M.C. Complex interactions between native and invasive fish: The simultaneous effects of multiple negative interactions. Oecologia 2004, 141, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, J.; Zięba, G.; Przybylski, M.; Smith, C. The role of intraspecific competition in the dispersal of an invasive fish. Freshw. Biol. 2019, 64, 933–941. [Google Scholar] [CrossRef]
- Dominguez Almela, V.; South, J.; Britton, J.R. Predicting the competitive interactions and trophic niche consequences of a globally invasive fish with threatened native species. J. Anim. Ecol. 2021, 90, 2651–2662. [Google Scholar] [CrossRef] [PubMed]
- Muhlfeld, C.C.; Kovach, R.P.; Jones, L.A.; Al-Chokhachy, R.; Boyer, M.C.; Leary, R.F.; Lowe, W.H.; Luikart, G.; Allendorf, F.W. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 2014, 4, 620–624. [Google Scholar] [CrossRef]
- Kovach, R.P.; Muhlfeld, C.C.; Boyer, M.C.; Lowe, W.H.; Allendorf, F.W.; Luikart, G. Dispersal and selection mediate hybridization between a native and invasive species. Proc. R. Soc. B 2015, 282, 20142454. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Bravo, L.; Perdices, A.; De Miguel, R.J.; Lambea-Camblor, A.; Penney, C.; Meloro, C.; Martinez-Cruz, B.; Brown, R.P. Hybridization and invasive species in a threatened freshwater fish community under environmental pressures: Morphometric and molecular evidence. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, e4046. [Google Scholar] [CrossRef]
- Duenas, M.A.; Ruffhead, H.J.; Wakefield, N.H.; Roberts, P.D.; Hemming, D.J.; Diaz-Soltero, H. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodivers. Conserv. 2018, 27, 3171–3183. [Google Scholar] [CrossRef]
- Griffen, B.D.; van Den Akker, D.; DiNuzzo, E.R.; Anderson, L.; Vernier, A. Comparing methods for predicting the impacts of invasive species. Biol. Invasions 2021, 23, 491–505. [Google Scholar] [CrossRef]
- Jelks, H.L.; Walsh, S.J.; Burkhead, N.M.; Contreras-Balderas, S.; Diaz-Pardo, E.; Hendrickson, D.A.; Lyons, J.; Mandrak, N.E.; McCormick, F.; Nelson, J.S.; et al. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 2008, 33, 372–407. [Google Scholar] [CrossRef]
- Elkins, D.; Sweat, S.C.; Kuhajda, B.R.; George, A.L.; Hill, K.S.; Wenger, S.J. Illuminating hotspots of imperiled aquatic biodiversity in the southeastern US. Glob. Ecol. Conserv. 2019, 19, e00654. [Google Scholar] [CrossRef]
- Williams, J.E.; Johnson, J.E.; Hendrickson, D.A.; Contreras-Balderas, S.; Williams, J.D.; Navarro-Mendoza, M.; McAllister, D.E.; Deacon, J.E. Fishes of North America endangered, threatened, or of special concern: 1989. Fisheries 1989, 14, 2–20. [Google Scholar] [CrossRef]
- Jenkins, R.E.; Burkhead, N.M. Freshwater Fishes of Virginia; American Fisheries Society: Bethesda, MD, USA, 1994; p. 1080. [Google Scholar]
- Stauffer, J.R., Jr.; Boltz, J.M.; White, L.R. The fishes of West Virginia. Proc. Acad. Nat. Sci. Phila. 1995, 146, 1–389. [Google Scholar]
- Buckwalter, J.D.; Frimpong, E.A.; Angermeier, P.L.; Barney, J.N. Seventy years of stream-fish collections reveal invasions and native range contractions in an Appalachian (USA) watershed. Divers. Distrib. 2018, 24, 219–232. [Google Scholar] [CrossRef]
- Cincotta, D.A.; Welsh, S.A. An update of the ichthyofauna of West Virginia with notes on historic sportfish stockings. Northeast. Nat. 2024, 31, 1–48. [Google Scholar] [CrossRef]
- Wood, R.M.; Mayden, R.L.; Matson, R.H.; Kuhajda, B.R.; Layman, S.R. Systematics and biogeography of the Notropis rubellus species group (Teleostei: Cyprinidae). Bull. Alabama Mus. Nat. Hist. 2002, 22, 37–80. [Google Scholar]
- Berendzen, P.B.; Simons, A.M.; Wood, R.M.; Dowling, T.E.; Secor, C.L. Recovering cryptic diversity and ancient drainage patterns in eastern North America: Historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 2008, 46, 721–737. [Google Scholar] [CrossRef]
- Berendzen, P.B.; Olson, W.M.; Barron, S.M. The utility of molecular hypotheses for uncovering morphological diversity in the Notropis rubellus species complex (Cypriniformes: Cyprinidae). Copeia 2009, 2009, 661–673. [Google Scholar] [CrossRef]
- Tracy, B.; Rohde, F.C.; Smith, S.; Bissette, J.; Hogue, G.M. A Guide to North Carolina’s Freshwater Fishes; UNC Press Books: Chapel Hill, NC, USA, 2024; p. 454. [Google Scholar]
- Hocutt, C.H.; Jenkins, R.E.; Stauffer, J.R., Jr. Zoogeography of the fishes of the Central Appalachians and Central Atlantic Coastal Plain. In The Zoogeography of North American Freshwater Fishes; Hocutt, C.H., Wiley, E.O., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 1986; pp. 162–210. [Google Scholar]
- Jenkins, R.E.; Lachner, E.A.; Schwartz, F.J. Fishes of the central Appalachian drainages: Their distribution and dispersal. In The Distributional History of the Biota of the Southern Appalachians. Part III: Vertebrates; Research Division Monograph 4; Holt, P.C., Ed.; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1972; pp. 43–117. [Google Scholar]
- Hocutt, C.H. Drainage evolution and fish dispersal in the central Appalachians. Geol. Soc. Am. Bull. 1979, 90, 197–234. [Google Scholar] [CrossRef]
- Simley, J.D.; Carswell, W.J., Jr. The National Map–Hydrography; U.S. Geological Survey Fact Sheet 2009–3054; National Geospatial Program Office: Reston, VA, USA, 2009; p. 4.
- Goldsborough, E.L.; Clarke, H.W. Fishes of West Virginia. Bull. U. S. Bur. Fish. 1908, 27, 29–39. [Google Scholar]
- Addair, J. The Fishes of the Kanawha River System in West Virginia and Some Factors Which Influence Their Distribution. Ph.D. Dissertation, Ohio State University, Columbus, OH, USA, 1944; p. 225. [Google Scholar]
- Stauffer, J.R., Jr.; Hocutt, C.H.; Masnik, M.T.; Reed, J. The longitudinal distribution of fishes in the East River, West Virginia and Virginia. Va. J. Sci. 1975, 26, 121–125. [Google Scholar]
- Hocutt, C.H.; Denoncourt, R.F.; Stauffer, J.R., Jr. Fishes of the Greenbrier River, West Virginia, with drainage history of the central Appalachians. J. Biogeogr. 1978, 5, 59–80. [Google Scholar] [CrossRef]
- Hocutt, C.H.; Denoncourt, R.F.; Stauffer, J.R., Jr. Fishes of the Gauley River, West Virginia. Brimleyana 1979, 1, 47–80. [Google Scholar]
- Welsh, S.A.; Cincotta, D.A.; Switzer, J.F. Fishes of Bluestone National Scenic River; Natural Resources Technical Report NPS/NER/NRTR; National Park Service: Washington, DC, USA, 2006; p. 109.
- Brown, S. An estimate of the duration of the lag phase of the logistic growth curve. AWUT-SerBio 2014, 17, 25–32. [Google Scholar]
- Teixeira, G.L.; Fernandes, T.J.; Muniz, J.A.; de Souza, F.A.C.; de Moura, R.S.; dos Santos Melo, R.M.P. Growth curves of campolina horses using nonlinear models. Livest. Sci. 2021, 251, 104631. [Google Scholar] [CrossRef]
- WVDNR (West Virginia Division of Natural Resources). 2015 West Virginia State Wildlife Action Plan; West Virginia Division of Natural Resources: Elkins, WV, USA, 2015; p. 1103.
- USFWS (U.S. Fish and Wildlife Service). Endangered and threatened wildlife and plants; endangered species status for the Candy Darter. Fed. Regist. 2018, 83, 58747–58754. [Google Scholar]
- Gibson, I.; Welsh, A.B.; Welsh, S.A.; Cincotta, D.A. Genetic swamping and possible species collapse: Tacking introgression between the native Candy Darter and introduced Variegate Darter. Conserv. Genet. 2019, 20, 287–298. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Kilian, J.V.; Klauda, R.J.; Widman, S.; Kashiwagi, M.; Bourquin, R.; Weglein, S.; Schuster, J. An assessment of a bait industry and angler behavior as a vector of invasive species. Biol. Invasions 2012, 14, 1469–1481. [Google Scholar] [CrossRef]
- Fuller, P.L. Vectors of invasions in freshwater invertebrates and fishes. In Biological Invasions in Changing Ecosystems: Vectors, Ecological Impacts, Management and Predictions; Canning-Clode, J., Ed.; De Gruyter: Berlin, Germany, 2015; pp. 88–115. [Google Scholar]
- Cincotta, D.A.; Chambers, D.B.; Messinger, T. Recent Changes in the Distribution of Fish Species in the New River Basin in West Virginia and Virginia. In Proceedings of the New River Symposium; Blacksburg, Virginia, 14–16 April 1983, Boone North Carolina, US National Park Service: Glen Jean, WV, USA, 1999; pp. 98–106. [Google Scholar]
- Messinger, T.; Chambers, D.B. Fish Communities and Their Relation to Environmental Factors in the Kanawha River Basin, West Virginia, Virginia, and North Carolina, 1997–1998; Water-Resources Investigations Report 01-4048; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2001; p. 51.
- Kessinger, B.E. Utilizing Conservation Genetics as a Strategy for Recovering the Endangered Candy Darter (Etheostoma osburni) in West Virginia. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2020; p. 76. [Google Scholar]
- Coutts, S.R.; Helmstedt, K.J.; Bennett, J.R. Invasion lags: The stories we tell ourselves and our inability to infer process from pattern. Divers. Distrib. 2018, 24, 244–251. [Google Scholar] [CrossRef]
- Garrard, G.E.; Bekessy, S.A.; McCarthy, M.A.; Wintle, B.A. When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecol. 2008, 33, 986–998. [Google Scholar] [CrossRef]
- Regan, T.J.; Chadès, I.; Possingham, H.P. Optimally managing under imperfect detection: A method for plant invasions. J. Appl. Ecol. 2011, 48, 76–85. [Google Scholar] [CrossRef]
- Messinger, T. Water-Quality Assessment of the Kanawha-New River Basin, West Virginia, Virginia, and North Carolina—Review of Water-Quality Literature Through 1996; U.S. Geological Survey Water-Resources Investigations Report 97-4075; US Geological Survey: Reston, VA, USA, 1997; p. 27.
- Messinger, T.; Hughes, C.A. Environmental Setting and Its Relations to Water Quality in the Kanawha River Basin; U.S. Geological Survey Water-Resources Investigations Report 00-4020; US Geological Survey: Reston, VA, USA, 2000; p. 57.
- Ben Rais Lasram, F.; Tomasini, J.A.; Guilhaumon, F.; Romdhane, M.S.; Do Chi, T.; Mouillot, D. Ecological correlates of dispersal success of Lessepsian fishes. Mar. Ecol. Prog. Ser. 2008, 363, 273–286. [Google Scholar] [CrossRef]
- Radinger, J.; Wolter, C. Patterns and predictors of fish dispersal in rivers. Fish Fish. 2014, 15, 456–473. [Google Scholar] [CrossRef]
- Beneteau, C.L.; Walter, R.P.; Mandrak, N.E.; Heath, D.D. Range expansion by invasion: Genetic characterization of invasion of the greenside darter (Etheostoma blennioides) at the northern edge of its distribution. Biol. Invasions 2012, 14, 191–201. [Google Scholar] [CrossRef]
- Cessna, J.F.; Raesly, R.L.; Kilian, J.V.; Cincotta, D.A.; Hilderbrand, R.H. Rapid colonization of the Potomac River drainage by the Rainbow Darter (Etheostoma caeruleum) following introduction. Northeast. Nat. 2014, 21, 1–11. [Google Scholar] [CrossRef]
- Neely, D.A.; George, A.L. Range extensions and rapid dispersal of Etheostoma blennioides (Teleostei: Percidae) in the Susquehanna River drainage. Northeast. Nat. 2006, 13, 391–402. [Google Scholar] [CrossRef]
- Shigesada, N.; Kawasaki, K. Invasion and the range expansion of species: Effects of long-distance dispersal. In Dispersal Ecology; The 42 Symposium of the British Ecological, Society; Bullock, J., Kenward, R., Hails, R., Eds.; Blackwell Science: Oxford, UK, 2002; pp. 350–373. [Google Scholar]
- Switzer, J.F.; Welsh, S.A.; King, T.L. Microsatellite DNA primers for the candy darter, Etheostoma osburni and variegate darter, Etheostoma variatum, and cross-species amplification in other darters (Percidae). Mol. Ecol. Resour. 2008, 8, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.A. The bait-fish industry in Ohio and West Virginia, with special reference to the Ohio River sport fishery. N. Am. J. Fish. Manag. 1982, 2, 232–238. [Google Scholar] [CrossRef]
- LoVullo, T.J.; Stauffer, J.R., Jr. The retail bait-fish industry in Pennsylvania–source of introduced species. J. Pa. Acad. Sci. 1993, 67, 13–15. [Google Scholar]
- Green, P.T.; O’Dowd, D.J.; Abbott, K.L.; Jeffery, M.; Retallick, K.; Mac Nally, R. Invasional meltdown: Invader–invader mutualism facilitates a secondary invasion. Ecology 2011, 92, 1758–1768. [Google Scholar] [CrossRef] [PubMed]
- Crooks, J.A. Characterizing ecosystem-level consequences of biological invasions: The role of ecosystem engineers. Oikos 2002, 97, 153–166. [Google Scholar] [CrossRef]
- Simberloff, D.; Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions 1999, 1, 21–32. [Google Scholar] [CrossRef]
- Simberloff, D. Invasional meltdown 6 years later: Important phenomenon, unfortunate metaphor, or both? Ecol. Lett. 2006, 9, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Peoples, B.K.; Frimpong, E.A. Evidence of mutual benefits of nest association among freshwater cyprinids and implications for conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 2013, 23, 911–923. [Google Scholar] [CrossRef]
- Betts, M.M.; Abaid, N.; Maurakis, E.G.; Frimpong, E.A. Bluehead chub Nocomis leptocephalus hosts exploit selfish-herd benefits from their heterospecific nest associates. Freshw. Biol. 2024, 69, 450–459. [Google Scholar] [CrossRef]
- Keplinger, B.J. An Experimental Study of Vertical Habitat Use and Habitat Shifts in Single-Species and Mixed-Species Shoals of Native and Nonnative Congeneric Cyprinids. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2007; p. 50. [Google Scholar]
- Easton, R.S.; Orth, D.J.; Burkhead, N.M. The first collection of rudd, Scardinius erythrophthalmus (Cyprinidae), in the New River, West Virginia. J. Freshw. Ecol. 1993, 8, 263–264. [Google Scholar] [CrossRef]
- Ricciardi, A.; Hoopes, M.F.; Marchetti, M.P.; Lockwood, J.L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 2013, 83, 263–282. [Google Scholar] [CrossRef]
- Jackson, C.R.; Cecala, K.K.; Wenger, S.J.; Kirsch, J.E.; Webster, J.R.; Leigh, D.S.; Sanders, J.M.; Love, J.P.; Knoepp, J.D.; Fraterrigo, J.M.; et al. Distinctive connectivities of near-stream and watershed-wide land uses differentially degrade rural aquatic ecosystems. BioScience 2022, 72, 144–159. [Google Scholar] [CrossRef]
≤1990 | >1990 | ||||||
---|---|---|---|---|---|---|---|
Endemic Taxa | Area (km2) | % Area | HUC (n) | Area (km2) | % Area | HUC (n) | % Change |
Miniellus scabriceps (New River Shiner) | 3600.0 | 30.0 | 35 | 998.0 | 8.3 | 9 | −72.3 |
Nocomis platyrhynchus (Bigmouth Chub) | 8572.4 | 71.5 | 80 | 8223.1 | 68.6 | 73 | −4.1 |
Notropis cf. rubellus (Rosyface Shiner) | 8208.1 | 68.4 | 75 | 5213.8 | 43.5 | 47 | −36.5 |
Phenacobius teretulus (Kanawha Minnow) | 839.5 | 7.0 | 8 | 528.0 | 4.4 | 5 | −37.1 |
Cottus cf. carolinae (Bluestone Sculpin) | 134.4 | 1.1 | 1 | 278.5 | 2.3 | 2 | 107.2 |
Cottus cf. carolinae (Buckeye Creek Cave) | 222.6 | 1.9 | 1 | 0.0 | 0.0 | 0 | −100.0 |
Cottus kanawhae (Kanawha Sculpin) | 1484.4 | 12.4 | 14 | 2399.0 | 20.0 | 19 | 61.6 |
Etheostoma osburni (Candy Darter) | 3898.5 | 32.5 | 37 | 2658.6 | 22.2 | 25 | −31.8 |
Percina gymnocephala (Appalachia Darter) | 1720.1 | 14.3 | 16 | 1085.0 | 9.0 | 10 | −36.9 |
Species | Year | Area (km2) | % Area | HUC (n) |
---|---|---|---|---|
Chrosomus erythrogaster (Rafinesque) (Southern Redbelly Dace) | 2003 | 107 | 0.89 | 1 |
Chrosomus oreas Cope (Mountain Redbelly Dace) | 1933 | 3730 | 31.1 | 37 |
Clinostomus funduloides Girard (Rosyside Dace) | 1928 | 6376 | 53.2 | 57 |
Cyprinella galactura (Cope) (Whitetail Shiner) | 1972 | 5611 | 46.8 | 50 |
Exoglossum maxillingua (Lesueur) (Cutlip Minnow) | 1972 | 153 | 1.3 | 1 |
Hudsonius hudsonius (Clinton) (Spottail Shiner) | 1972 | 1473 | 12.3 | 12 |
Luxilus albeolus (Jordan) (White Shiner) | 1935 | 7158 | 59.7 | 63 |
Luxilus chrysocephalus Rafinesque (Striped Shiner) | 1955 | 7135 | 59.5 | 67 |
Luxilus cornutus (Mitchill) (Common Shiner) | 1985 | 109 | 0.9 | 1 |
Lythrurus ardens (Cope) (Rosefin Shiner) | 1966 | 626 | 5.2 | 6 |
Miniellus procne (Cope) (Swallowtail Shiner) | 2019 | 125 | 1.0 | 1 |
Nocomis leptocephalus (Girard) (Bluehead Chub) | 1972 | 3626 | 30.2 | 34 |
Notemigonus crysoleucas (Mitchill) (Golden Shiner) * | 1948 | 1909 | 15.9 | 18 |
Notropis atherinoides Rafinesque (Emerald Shiner) | 1935 | 462 | 3.9 | 4 |
Notropis telescopus (Cope) (Telescope Shiner) | 1972 | 8334 | 69.5 | 76 |
Pimephales promelas Rafinesque (Fathead Minnow) * | 1964 | 1793 | 14.9 | 13 |
Rhinichthys cataractae (Valenciennes) (Longnose Dace) | 1928 | 8174 | 68.2 | 72 |
Scardinius erythrophthalmus (Linnaeus) (Rudd) | 1991 | 151 | 1.3 | 1 |
Etheostoma caeruleum Storer (Rainbow Darter) | 1959 | 6461 | 53.9 | 58 |
Etheostoma nigrum Rafinesque (Johnny Darter) | 1935 | 2421 | 20.2 | 22 |
Etheostoma tennesseense Powers and Mayden (Tennessee Darter) | 1999 | 803 | 6.7 | 7 |
Etheostoma variatum Kirtland (Variegate Darter) | 1982 | 2027 | 16.9 | 18 |
Nothonotus rufilineatus (Cope) (Redline Darter) | 2019 | 278 | 2.3 | 2 |
Percina caprodes (Rafinesque) (Logperch) | 1965 | 2208 | 18.4 | 19 |
Percina maculata (Girard) (Blackside Darter) | 1979 | 251 | 2.1 | 2 |
Percina roanoka (Jordan and Jenkins) (Roanoke Darter) | 1970 | 4662 | 38.9 | 41 |
Species | M | a | b | c | m | λ | Lag | MAP | MDP | ADP | MDP-MAP | c-λ | ADP-λ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chrosomus oreas (Mountain Redbelly Dace) | L | 4712.7 (155.9) | 0.081 (0.003) | 2002.1 (1.0) | 95.9 | 1977.5 | 44.5 | 1985.9 | 2018.2 | – | 32.3 | 24.6 | – |
Clinostomus funduloides (Rosyside Dace) | L | 8883.1 456.1) | 0.052 (0.002) | 1999.9 (2.3) | 114.3 | 1961.1 | 33.1 | 1974.3 | – | – | – | 38.8 | – |
Cyprinella galactura (Whitetail Shiner) | L | 5584.5 (48.3) | 0.366 (0.017) | 1999.9 (0.15) | 504.7 | 1994.4 | 22.4 | 1996.3 | 2003.4 | 2006.3 | 7.1 | 5.5 | 11.9 |
Hudsonius hudsonius (Spottail Shiner) | G | 1338.4 (36.9) | 0.113 (0.015) | 1977.6 (0.73) | 55.6 | 1968.8 | −3.2 | – | 1986.1 | 1993.5 | – | 8.8 | 24.7 |
Luxilus albeolus (White Shiner) | L | 7502.4 (159.2) | 0.096 (0.005) | 1987.0 (0.75) | 179.4 | 1966.1 | 31.1 | 1973.0 | 2000.7 | 2010.7 | 27.7 | 20.9 | 44.6 |
Luxilus chrysocephalus (Striped Shiner) | G | 6934.1 (57.1) | 0.094 (0.004) | 1965.9 (0.27) | 239.0 | 1955.3 | 0.3 | 1955.7 | 1976.2 | 1985.1 | 20.5 | 10.6 | 29.8 |
Nocomis leptocephalus (Bluehead Chub) | L | 5615.8 (605.7) | 0.065 (0.005) | 2011.9 (3.5) | 91.5 | 1981.2 | 9.2 | 1991.7 | – | – | – | 30.7 | – |
Notemigonus crysoleucas (Golden Shiner) * | G | 2556.8 (144.0) | 0.038 (0.003) | 1985.8 (1.8) | 36.1 | 1959.8 | 11.8 | 1960.7 | 2010.9 | – | 50.2 | 26 | – |
Notropis telescopus (Telescope Shiner) | L | 9430.2 (364.6) | 0.095 (0.007) | 1995.1 (1.16) | 224.0 | 1974.1 | 2.1 | 1981.3 | 2009.0 | 2019.2 | 27.7 | 21 | 45.1 |
Pimephales promelas (Fathead Minnow) * | G | 2187.2 (103.5) | 0.049 (0.004) | 1985.6 (1.3) | 39.7 | 1965.3 | 1.3 | 1964.5 | 1999.5 | 2015.0 | 35 | 20.3 | 49.7 |
Rhinichthys cataractae (Longnose Dace) | L | 8278.5 (98.7) | 0.078 (0.002) | 1974.6 (0.54) | 161.0 | 1948.9 | 20.9 | 1957.6 | 1991.5 | 2004.0 | 33.9 | 25.7 | 55.1 |
Etheostoma caeruleum (Rainbow Darter) | L | 7737.5 (375.0) | 0.10 (0.007) | 2000.6 (1.4) | 187.5 | 1980.0 | 21 | 1987.1 | 2014.2 | – | 27.1 | 20.6 | – |
Etheostoma nigrum (Johnny Darter) | G | 2781.7 (143.5) | 0.048 (0.005) | 1980.6 (1.5) | 49.1 | 1959.8 | 24.8 | 1960.6 | 2000.7 | 2018.1 | 40.1 | 20.8 | 58.3 |
Etheostoma tennesseense (Tennessee Darter) | L | 904.9 (43.1) | 0.198 (0.019) | 2010.1 (0.69) | 44.5 | 1999.9 | 0.9 | 2003.5 | 2016.7 | 2021.6 | 13.2 | 2.2 | 21.7 |
Etheostoma variatum (Variegate Darter) | L | 2017.9 (31.5) | 0.315 (0.02) | 2001.6 (0.27) | 157.9 | 1995.2 | 13.2 | 1997.4 | 2005.8 | 2008.9 | 8.4 | 6.4 | 13.7 |
Percina caprodes (Logperch) | L | 2637.9 (114.1) | 0.095 (0.005) | 2003.0 (1.2) | 62.3 | 1981.8 | 16.8 | 1957.6 | 1991.5 | – | 33.9 | 21.2 | – |
Percina roanoka (Roanoke Darter) | L | 5606.1 (292.4) | 0.094 (0.007) | 2001.1 (1.48) | 131.5 | 1979.8 | 9.8 | 1987.1 | 2015.1 | – | 28 | 21.3 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welsh, S.A.; Cincotta, D.A.; Owens, N.V.; Stauffer, J.R., Jr. Endemic and Invasive Species: A History of Distributional Trends in the Fish Fauna of the Lower New River Drainage. Water 2025, 17, 221. https://doi.org/10.3390/w17020221
Welsh SA, Cincotta DA, Owens NV, Stauffer JR Jr. Endemic and Invasive Species: A History of Distributional Trends in the Fish Fauna of the Lower New River Drainage. Water. 2025; 17(2):221. https://doi.org/10.3390/w17020221
Chicago/Turabian StyleWelsh, Stuart A., Daniel A. Cincotta, Nathaniel V. Owens, and Jay R. Stauffer, Jr. 2025. "Endemic and Invasive Species: A History of Distributional Trends in the Fish Fauna of the Lower New River Drainage" Water 17, no. 2: 221. https://doi.org/10.3390/w17020221
APA StyleWelsh, S. A., Cincotta, D. A., Owens, N. V., & Stauffer, J. R., Jr. (2025). Endemic and Invasive Species: A History of Distributional Trends in the Fish Fauna of the Lower New River Drainage. Water, 17(2), 221. https://doi.org/10.3390/w17020221