Role of Landslides and Lithology in Within-Year Variability of Stream Runoff in Small Forested Catchments in the Outer (Flysh) Carpathians in Poland
Abstract
:1. Introduction
- (1)
- Do landslides decrease or increase the variability of stream runoff throughout the year?
- (2)
- What is the role of catchment lithology and landslide properties in determining stream runoff variability?
2. Study Area
3. Methods
The Hydro-Meteorologic Background of the Study Period
4. Results
4.1. Statistical Characteristics of Specific Runoff in 2022: Landslide Catchments vs. Non-Landslide Catchments
4.2. Specific Runoff Variability Throughout the Year: Landslide Catchments vs. Non-Landslide Catchments
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexandrowicz, Z.; Margielewski, W. Impact of mass movements on geo- and biodiversity in the Polish Outer (Flysch) Carpathians. Geomorphology 2010, 123, 290–304. [Google Scholar] [CrossRef]
- Margielewski, W. O strukturalnych uwarunkowaniach rozwoju głębokich osuwisk—Implikacje dla Karpat fliszowych. Prz. Geol. 2001, 49, 515–524. [Google Scholar]
- Chowaniec, J.; Wójcik, A. Osuwiska w Województwie Małopolskim; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Kraków, Poland, 2012; pp. 1–72. [Google Scholar]
- Rączkowski, W. Landslide hazard in the Polish flysh Carpathians. Stud. Geomorph. Carpatho-Balc. 2007, 41, 61–75. [Google Scholar]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dynam. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- Chen, H.; Dadson, S.; Chi, Y. Recent rainfall-induced landslides and debris flow innorthern Taiwan. Geomorphology 2006, 77, 112–125. [Google Scholar] [CrossRef]
- Davies, T.R.; McSaveney, M.J. The role of rock fragmentation in the motion of large landslides. Eng. Geol. 2009, 109, 67–79. [Google Scholar] [CrossRef]
- Carlini, M.; Chelli, A.; Vescovi, P.; Artoni, A.; Clemenzi, L.; Tellini, C.; Torelli, L. Tectonic control on the development and distribution of large landslides in the Northern Apennines (Italy). Geomorphology 2015, 253, 425–437. [Google Scholar] [CrossRef]
- Cui, S.; Yang, Q.; Zhu, L.; Pei, X.; Wang, S.; Liang, J. The role of tectonic discontinuities in triggering large seismic landslides. Lithosphere 2022, 7, 3196788. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Dunning, S.A.; Mitchell, W.A.; Rosser, N.J.; Petley, D.N. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Eng. Geol. 2007, 93, 130–144. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Saito, H.; Nakayama, D.; Matsuyama, H. Relationship between the initiation of a shallow landslide and rainfall intensity—Duration thresholds in Japan. Geomorphology 2010, 118, 167–175. [Google Scholar] [CrossRef]
- Huang, J.; Ju, N.P.; Liao, Y.J.; Liu, D.D. Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat. Hazard Earth Syst. 2015, 15, 2715–2723. [Google Scholar] [CrossRef]
- Larsen, M.C.; Simon, A. A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr. Ann. A 2017, 75, 13–23. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. WIREs Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Liang, W.-L. Hydrological responses in a natural forested headwater before and after subsurface displacement. J. Hydrol. 2020, 591, 125529. [Google Scholar] [CrossRef]
- Iverson, R.M.; Major, J.J. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, nordwesterrn California: Physical interpretation of empirical relations. Geol. Soc. Am. Bull. 1987, 99, 579–594. [Google Scholar] [CrossRef]
- Berti, M.; Simoni, A. Observation and analysis of near-surface pore-pressure measurements in clay-shales slopes. Hydrol. Process. 2012, 26, 2187–2205. [Google Scholar] [CrossRef]
- Binet, S.; Jomard, H.; Lebourg, T.; Guglielmi, Y.; Tric, E.; Bertrand, C.; Mudry, J. Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers. Hydrol. Process. 2007, 21, 3463–3472. [Google Scholar] [CrossRef]
- Van Asch, T.W.J.; Hendriks, M.R.; Hessel, R.; Rappange, F.E. Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng. Geol. 1996, 42, 239–251. [Google Scholar] [CrossRef]
- Van Asch, T.W.J.; Buma, J.; van Beek, L.P.H. A view on some hydrological triggering systems in landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Van Asch, T.W.J.; Buma, J. Modelling groundwater fluctuations and the frequency of movement of a landslide in the Terres Noires region of Barcelonnette (France). Earth Surf. Proc. Land. 1997, 22, 131–141. [Google Scholar] [CrossRef]
- Uchida, T.; Kosugi, K.; Mizuyama, T. Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resour. Res. 2002, 38, 1119. [Google Scholar] [CrossRef]
- De Montety, V.; Marc, V.; Emblanch, C.; Malet, J.-P.; Bertrand, C.; Maquaire, O.; Bogaard, T. Identifying origin of groundwater and flow processes in complex landslides affecting black marls in southern French Alps: Insights from an hydrochemistry survey. Earth Surf. Proc. Land. 2007, 32, 32–48. [Google Scholar] [CrossRef]
- Bièvre, G.; Jongmans, D.; Winiarski, T.; Zumbo, V. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol. Process. 2011, 26, 2128–2142. [Google Scholar] [CrossRef]
- Garel, E.; Marc, V.; Ruy, S.; Cognard-Plancq, A.L.; Klotz, S.; Emblanch, C.; Simler, R. Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: The Draix hillslope experiment. Hydrol. Process 2012, 26, 2171–2186. [Google Scholar] [CrossRef]
- Van der Spek, J.E.; Bogaard, T.A.; Bakker, M. Characterization of groundwater dynamics in landslides in varved clays. Hydrol. Earth Syst. Sci. 2013, 17, 2171–2183. [Google Scholar] [CrossRef]
- Krzeminska, D.M.; Bogaard, T.A.; Malet, J.-P.; van Beek, L.P.H. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide. Hydrol. Earth Syst. Sci. 2013, 17, 947–959. [Google Scholar] [CrossRef]
- Margielewski, W. Records of the Late Glacial–Holocene palaeoenvironmental changes in landslide forms and deposits ofthe Beskid Makowski and Beskid Wyspowy Mts. area (Polish Outer Carpathians). Folia Quat. 2006, 76, 1–149. [Google Scholar]
- Margielewski, W. Torfowiska osuwiskowe polskich Karpat fliszowychjako czuły indykator zmian paleośrodowiskapóźnego glacjału i holocenu. Stud. Limnol. Telmatologica 2014, 8, 37–55. [Google Scholar]
- Zatorski, M.; Franczak, P.; Buczek, K.; Strzyżowski, D.; Witkowski, K. Rzeźba terenu i jej współczesne przemiany. In Police: Pasmo w Cieniu Babiej Góry; Franczak, P., Ed.; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2017; pp. 31–64. [Google Scholar]
- Buczek, K. Wpływ Osuwisk na Stosunki Wodne Stoku oraz Charakter Odpływu ze Zlewni na Przykładzie Gorców. Ph.D. Thesis, Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków, Poland, 2024. [Google Scholar]
- Malet, J.-P.; van Asch, T.W.J.; van Beek, R.; Maquaire, O. Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat. Hazard Earth Syst. 2005, 5, 71–85. [Google Scholar] [CrossRef]
- Oszczypko, N. Budowa geologiczna. In Karpaty Polskie; Warszyńska, J., Ed.; Uniwersytet Jagielloński: Kraków, Poland, 1995; pp. 15–22. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Długosz, M. Podatność stoków na osuwanie w polskich Karpatach fliszowych. Pr. Geogr. 2011, 230, 1–112. [Google Scholar]
- Ryłko, W.; Paul, Z. Szczegółowa Mapa Geologiczna Polski 1:50000, Arkusz Lachowice 1013. 2013. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0 (accessed on 21 July 2023).
- Larsen, I.; Montgomery, D.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet. Sci. Lett. 2009, 279, 222–229. [Google Scholar] [CrossRef]
- Hovius, N.; Stark, C.P.; Allen, P.A. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef]
- Meier, C.; Jaboyedoff, M.; Derron, M.H.; Gerber, C. A method to assess the probability of thickness and volume estimates of small and shallow initial landslide ruptures based on surface area. Landslides 2020, 17, 975–982. [Google Scholar] [CrossRef]
- Website The Polish Geological Institute—National Research Institute. Available online: https://geoportal.pgi.gov.pl/portal/page/portal/SOPO/Wyszukaj3 (accessed on 10 July 2023).
- Trzepla, M. Objaśnienia do Mapy Osuwisk i Terenów Zagrożonych Ruchami Masowymi, Skala 1:10000. Gmina Bystra-Sidzina; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warszawa, Poland, 2010; pp. 1–24. [Google Scholar]
- Książkiewicz, M. Szczegółowa Mapa Geologiczna Polski 1:50000, Arkusz Zawoja 1031. 1971. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0 (accessed on 20 July 2023).
- Paul, Z.; Ryłko, W. Szczegółowa Mapa Geologiczna Polski 1:50000, Arkusz Rabka 1032. 1986. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?gpmap=gp0 (accessed on 18 July 2023).
- Wojciechowski, T.; Lewandowski, J. Objaśnienia do Mapy Osuwisk i Terenów Zagrożonych Ruchami Masowymi, Gmina Rabka, Skala 1:10000; Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy: Warszawa, Poland, 2010; pp. 1–33. [Google Scholar]
- Franczak, P.; Hudyka, M.; Buczek, K.; Górnik, M. Zróżnicowanie przestrzenne i zmienność odpływu w zlewniach fliszowych na obszarze Masywu Babiej Góry. Ann. Univ. Mariae Curie-Sklodowska Sect. B—Geogr. Geol. Mineral. Petrogr. 2015, 70, 95–116. [Google Scholar] [CrossRef]
- Dynowska, I. Wody. In Karpaty Polskie; Warszyńska, J., Ed.; Uniwersytet Jagielloński: Kraków, Poland, 1995; pp. 49–67. [Google Scholar]
- Berghuijs, W.R.; Hartmann, A.; Woods, R.A. Streamflow sensitivity to water storage changes across Europe. Geophys. Res. Lett. 2016, 43, 1980–1987. [Google Scholar] [CrossRef]
- Carlier, C.; Wirth, S.B.; Cochand, F.; Hunkeler, D.; Brunner, P. Geology controls streamflow dynamics. J. Hydrol. 2018, 566, 756–769. [Google Scholar] [CrossRef]
- Neuzil, C.E. Permeability of Clays and Shale. Annu. Rev. Earth Planet. Sci. 2019, 47, 247–273. [Google Scholar] [CrossRef]
- Krzeminska, D.M.; Bogaard, T.A.; van Asch, T.W.J.; van Beek, L.P.H. A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol. Earth Syst. Sci. 2012, 16, 1561–1576. [Google Scholar] [CrossRef]
- Brönnimann, C.; Stähli, M.; Schneider, P.; Seward, L.; Springman, S.M. Bedrock exfiltration as a triggeringmechanism for shallow landslides. Water Resour. Res. 2013, 49, 5155–5167. [Google Scholar] [CrossRef]
- Van Woerden, J. The Role of Fissures in the Hydrology and Stability of the Hollin Hill Landslide. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2014. [Google Scholar]
- Hale, V.C.; McDonnell, J.J.; Stewart, M.K.; Solomon, D.K.; Doolitte, J.; Ice, G.G.; Pack, R.T. Effect of bedrock permeability on stream base flow mean transit time scaling relationships: 2. Process study of storage and release. Water Resour. Res. 2016, 52, 1375–1397. [Google Scholar] [CrossRef]
- Hale, V.C.; McDonnell, J.J. Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison. Water Resour. Res. 2016, 52, 1358–1374. [Google Scholar] [CrossRef]
- Pfister, L.; Martínez-Carreras, N.; Hissler, C.; Klaus, J.; Carrer, G.E.; Stewart, M.K.; McDonnell, J.J. Bedrock geology controls on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. Hydrol. Process. 2017, 31, 1828–1845. [Google Scholar] [CrossRef]
- Burt, E.I.; Coayla Rimachi, D.H.; Ccahuana Quispe, A.J.; Atwood, A.; West, A.J. Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain. Hydrol. Earth Syst. Sci. 2023, 27, 2883–2898. [Google Scholar] [CrossRef]
- Hood, J.L.; Hayashi, M. Characterization of snowmeltflux and groundwater storage in an alpine headwater basin. J. Hydrol. 2015, 521, 482–497. [Google Scholar] [CrossRef]
- Carroll, R.W.H.; Deems, J.S.; Niswonger, R.; Schumer, R.; Williams, K.H. The importance of interflow to groundwater recharge in a snowmelt-dominated headwater basin. Geophys. Res. Lett. 2019, 46, 5899–5908. [Google Scholar] [CrossRef]
- Hümann, M.; Schüler, G.; Müller, C.; Schneider, R.; Johst, M.; Caspari, T. Identification of runoff processes—Impact of different forest types and soil properties on soil-water interrelations and floods. J. Hydrol. 2011, 409, 637–649. [Google Scholar] [CrossRef]
- Neris, J.; Tejedor, M.; Rodríguez, M.; Fuentes, J.; Jiménez, C. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain). Catena 2013, 108, 50–57. [Google Scholar] [CrossRef]
Parameter | Unit | Pasmo Lubonia Range | Mały Beskid Mts. | Pasmo Polic Range | ||||
---|---|---|---|---|---|---|---|---|
PL | PL-L | MB | MB-L | PP | PP-L | |||
Area | km2 | 1.01 | 1.10 | 1.12 | 0.75 | 0.92 | 1.09 | |
Elevation | Min | m | 655 | 499 | 520 | 531 | 728 | 742 |
Max | 910 | 972 | 761 | 818 | 1156 | 1226 | ||
Average | 803 | 684 | 639 | 676 | 941 | 1010 | ||
Denivelation | m | 255 | 463 | 241 | 287 | 428 | 484 | |
Average slope inclination | ° | 11.1 | 12.0 | 12.0 | 12.2 | 13.1 | 13.6 |
Characteristics | Statistics | Unit | Pasmo Lubonia Range | Mały Beskid Mts. | Pasmo Polic Range | |||
---|---|---|---|---|---|---|---|---|
PL | PL-L | MB | MB-L | PP | PP-L | |||
Runoff depth | mm | 272.3 | 250.1 | 248.8 | 304.8 | 376.6 | 457.3 | |
Runoff coefficient | % | 29 | 28 | 28 | 34 | 29 | 33 | |
Specific runoff | Average | L/s/km2 | 8.63 | 7.93 | 7.86 | 9.67 | 11.88 | 14.49 |
Median | 4.86 | 2.54 | 6.21 | 5.13 | 7.67 | 10.12 | ||
p25% | 3.01 | 0.58 | 3.41 | 2.21 | 6.10 | 6.45 | ||
p75% | 10.05 | 7.95 | 10.43 | 12.08 | 12.06 | 16.87 | ||
p10% | 2.00 | 0.15 | 2.14 | 1.26 | 5.06 | 5.25 | ||
p90% | 19.04 | 17.26 | 14.52 | 21.41 | 22.26 | 31.09 | ||
Min | 0.15 | 0.00 | 0.79 | 0.00 | 2.40 | 3.01 | ||
Max | 84.07 | 190.31 | 119.87 | 110.81 | 145.65 | 118.81 | ||
Max-Min | 83.92 | 190.31 | 119.08 | 110.81 | 143.24 | 115.80 | ||
p75%-p25% | 7.03 | 7.37 | 7.01 | 9.88 | 5.96 | 10.42 | ||
Quartile coefficient of variation | - | 0.72 | 1.45 | 0.56 | 0.96 | 0.39 | 0.52 |
Runoff Characteristics | PL-L vs. PL | MB-L vs. MB | PP-L vs. PP |
---|---|---|---|
Share of very low runoff | distinctly higher | higher | slightly higher |
Share of high runoff | distinctly higher | higher | slightly higher |
Annual and monthly runoff variation | distinctly higher | higher | slightly higher |
Runoff variation during spring snowmelt events | distinctly higher | higher | higher |
Runoff variation during summer rainfall events | distinctly higher | higher | slightly higher |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwek, J.P. Role of Landslides and Lithology in Within-Year Variability of Stream Runoff in Small Forested Catchments in the Outer (Flysh) Carpathians in Poland. Water 2025, 17, 190. https://doi.org/10.3390/w17020190
Siwek JP. Role of Landslides and Lithology in Within-Year Variability of Stream Runoff in Small Forested Catchments in the Outer (Flysh) Carpathians in Poland. Water. 2025; 17(2):190. https://doi.org/10.3390/w17020190
Chicago/Turabian StyleSiwek, Joanna P. 2025. "Role of Landslides and Lithology in Within-Year Variability of Stream Runoff in Small Forested Catchments in the Outer (Flysh) Carpathians in Poland" Water 17, no. 2: 190. https://doi.org/10.3390/w17020190
APA StyleSiwek, J. P. (2025). Role of Landslides and Lithology in Within-Year Variability of Stream Runoff in Small Forested Catchments in the Outer (Flysh) Carpathians in Poland. Water, 17(2), 190. https://doi.org/10.3390/w17020190