Shallow Hydrostratigraphy Beneath Marsh Platforms: Insights from Electrical Resistivity Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection and Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Elsey-Quirk, T.; Lynn, A.; Jacobs, M.D.; Diaz, R.; Cronin, J.; Wang, L.; Huang, H.; Justic, D. Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise. Nat. Commun. 2024, 15, 3518. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.L.; Wilson, A.M.; Morris, J.T. Hydrologic variability in a salt marsh: Assessing the links between drought and acute marsh dieback. Estuar. Coast. Shelf Sci. 2012, 111, 95–106. [Google Scholar] [CrossRef]
- Marsh, A.; Blum, L.K.; Christian, R.R.; Ramsey III, E.; Rangoonwala, A. Response and resilience of Spartina alterniflora to sudden dieback. J. Coast. Conserv. 2016, 20, 335–350. [Google Scholar] [CrossRef]
- Morton, R.A.; Tiling, G.; Ferina, N.F. Causes of hot-spot wetland loss in the Mississippi delta plain. Environ. Geosci. 2003, 10, 71–80. [Google Scholar] [CrossRef]
- Schepers, L.; Kirwan, M.; Guntenspergen, G.; Temmerman, S. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnol. Oceanogr. 2017, 62, 137–150. [Google Scholar] [CrossRef]
- Alber, M.; Swenson, E.M.; Adamowicz, S.C.; Mendelssohn, I.A. Salt marsh dieback: An overview of recent events in the US. Estuar. Coast. Shelf Sci. 2008, 80, 1–11. [Google Scholar] [CrossRef]
- Ogburn, M.B.; Alber, M. An investigation of salt marsh dieback in Georgia using field transplants. Estuaries Coasts 2006, 29, 54–62. [Google Scholar] [CrossRef]
- Day, J.W.; Christian, R.R.; Boesch, D.M.; Yáñez-Arancibia, A.; Morris, J.; Twilley, R.R.; Naylor, L.; Schaffner, L.; Stevenson, C. Consequences of Climate Change on the Ecogeomorphology of Coastal Wetlands. Estuaries Coasts 2008, 31, 477–491. [Google Scholar] [CrossRef]
- Baustian, J.J.; Mendelssohn, I.A.; Hester, M.W. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 2012, 18, 3377–3382. [Google Scholar] [CrossRef]
- Coleman, D.J.; Kirwan, M.L. The effect of a small vegetation dieback event on salt marsh sediment transport. Earth Surf. Process. Landf. 2019, 44, 944–952. [Google Scholar] [CrossRef]
- Krest, J.M.; Moore, W.S.; Gardner, L.R.; Morris, J.T. Marsh nutrient export supplied by groundwater discharge: Evidence from radium measurements. Glob. Biogeochem. Cycles 2000, 14, 167–176. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Materne, M.; Bush, T.; Houck, M. Plant Guide for Smooth Cordgrass (Spartina alterniflora). USDA-Natural Resources Conservation Service. 2022. Available online: https://www.nrcs.usda.gov/plantmaterials/njpmcpg13933.pdf (accessed on 3 January 2025).
- Eleuterius, L.N. Vegetative Morphology and Anatomy of the Salt Marsh Rush, Juncus roemerianus. Gulf Res. Rep. 1976, 5, 1–10. [Google Scholar] [CrossRef]
- Moore, W.S.; Blanton, J.O.; Joye, J. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J. Geophys. Res. 2006, 111, C09006. [Google Scholar] [CrossRef]
- Swarzenski, P.W.; Izbicki, J.A. Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity. Estuar. Coast. Shelf Sci. 2009, 83, 77–89. [Google Scholar] [CrossRef]
- Dimova, N.T.; Swarzenski, P.W.; Dulaiova, H.; Glenn, C.R. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water-seawater interface in two Hawaiian groundwater systems. J. Geophys. Res. 2012, 117, C02012. [Google Scholar] [CrossRef]
- Swarzenski, P.W.; Burnett, W.C.; Greenwood, W.J.; Herut, B.; Peterson, R.; Dimova, N.; Shalem, Y.; Yechieli, Y.; Weinstein, Y. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel. Geophys. Res. Lett. 2006, 33, L24405. [Google Scholar] [CrossRef]
- U.S. Climate Data. Available online: https://www.usclimatedata.com/ (accessed on 13 November 2024).
- Wiegert, R.G.; Pomeroy, L.R.; Wiebe, W.J. Ecology of salt marshes: An introduction. In The Ecology of a Salt Marsh; Pomeroy, L.R., Wiegert, R.G., Eds.; Springer: New York, NY, USA, 1981; pp. 3–19. [Google Scholar]
- Tides and Currents (Datums for 8670870, Fort Pulaski GA). Available online: https://tidesandcurrents.noaa.gov/datums.html?datum=MLLW&units=1&epoch=0&id=8670870&name=Fort+Pulaski&state=GA (accessed on 13 November 2024).
- Tides and Currents (Datums for 8720030, Fernandina Beach FL). Available online: https://tidesandcurrents.noaa.gov/datums.html?datum=MLLW&units=1&epoch=0&id=8720030&name=Fernandina+Beach&state=FL (accessed on 13 November 2024).
- Tides and Currents (Relative Sea Level Trend Fort Pulaski). Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8670870 (accessed on 13 November 2024).
- Tides and Currents (Relative Sea Level Trend Fernandina Beach). Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8720030 (accessed on 13 November 2024).
- Dibble, M. Examination of Salt Marsh Dieback Development and Recovery Using Historical Aerial Photography and Climatic Conditions. Bachelor’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2017. [Google Scholar]
- Trimble R8 GNSS Receiver User Guide. Available online: https://trl.trimble.com/docushare/dsweb/Get/Document-666215/R8-R6-5800_v400A_UserGuide.pdf (accessed on 23 July 2024).
- Rinaldi, V.; Guichon, M.; Ferrero, V.; Serrano, C.; Ponti, N. Resistivity Survey of the Subsurface Conditions in the Estuary of the Rio de la Plata. J. Geotech. Geoenviron. Eng. 2006, 132, 72–79. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar] [CrossRef]
- Advanced Geosciences Incorporated Instruction Manual for EarthImager 2D Resistivity and IP Inversion Software. Available online: http://www.agiusa.com/ (accessed on 13 November 2024).
- Nguyen, F.; Garambois, S.; Jongmans, D.; Pirard, E.; Loke, M.H. Image processing of 2D resistivity data for imaging faults. J. Appl. Geophys. 2005, 57, 260–277. [Google Scholar] [CrossRef]
- Caputo, R.; Piscitelli, S.; Oliveto, A.; Rizzo, E.; Lapenna, V. The use of electrical resistivity tomographies in active tectonics: Examples from the Tyrnavos Basin, Greece. J. Geodyn. 2003, 36, 19–35. [Google Scholar] [CrossRef]
- Hoffmann, R.; Dietrich, P. An approach to determine equivalent solutions to the geoelectrical 2D inversion problem. J. Appl. Geophys. 2004, 56, 79–91. [Google Scholar] [CrossRef]
- Oldenburg, D.W.; Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 1999, 64, 403–416. [Google Scholar] [CrossRef]
- Michaels, R.E.; Zieman, J.C. Fiddler crab (Uca spp.) burrows have little effect on surrounding sediment oxygen concentrations. J. Exp. Mar. Biol. Ecol. 2013, 448, 104–113. [Google Scholar] [CrossRef]
- Hemond, H.F.; Fifield, J.L. Subsurface flow in salt marsh peat: A model and field study. Limnol. Oceanogr. 1982, 27, 126–136. [Google Scholar] [CrossRef]
- Granse, D.; Titschack, J.; Ainouche, M.; Jensen, K.; Koop-Jackobsen, K. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae). Sci. Total Environ. 2022, 802, 149771. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Lockington, D. Aeration for plant root respiration in a tidal marsh. Water Resour. Res. 2005, 41, W06023. [Google Scholar] [CrossRef]
- Xin, P.; Jin, G.; Li, L.; Barry, D.A. Effects of crab burrows on pore water flows in salt marshes. Adv. Water Resour. 2009, 32, 439–449. [Google Scholar] [CrossRef]
- Silva Filho, A.M.; Silva, J.R.S.; Fernandes, G.M.; Morais, L.D.; Coimbra, A.P.; Calixto, W.P. Root system analysis and influence of moisture on soil electrical properties. Energies 2021, 14, 6951. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Papen, M.; Hanssens, D.; De Smedt, P.; Walraevens, K.; Hermans, T. Combining resistivity and frequency domain electromagnetic methods to investigate submarine groundwater discharge in the littoral zone. Hydrol. Earth Syst. Sci. 2020, 24, 3539–3555. [Google Scholar] [CrossRef]
- Koontz, E.L.; Parker, S.M.; Stearns, A.E.; Roberts, B.J.; Young, C.M.; Windham-Myers, L.; Oikawa, P.Y.; Megonigal, J.P.; Noyce, G.L.; Buskey, E.J.; et al. Controls on spatial variation in porewater methane concentrations across United States tidal wetlands. Sci. Total Environ. 2024, 957, 177290. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.W.; Germann, P.F.; Odum, W.E. Geomorphological control of subsurface hydrology in the creekbank zone of tidal marshes. Estuar. Coast. Shelf Sci. 1987, 25, 677–691. [Google Scholar] [CrossRef]
- Gardner, L.R.; Porter, D.E. Stratigraphy and geologic history of a southeastern salt marsh basin, North Inlet, South Carolina, USA. Wetl. Ecol. Manag. 2001, 9, 371–385. [Google Scholar] [CrossRef]
- Gardner, L.R. Role of stratigraphy in governing pore water seepage from salt marsh sediments. Water Resour. Res. 2007, 43, W07502. [Google Scholar] [CrossRef]
- Wilson, A.M.; Moore, W.S.; Joye, S.B.; Anderson, J.L.; Schutte, C.A. Storm-driven groundwater flow in a salt marsh. Water Resour. Res. 2011, 47, W02535. [Google Scholar] [CrossRef]
- Wilson, A.M.; Evans, T.; Moore, W.; Schutte, C.A.; Joye, S.B.; Hughes, A.H.; Anderson, J.L. Groundwater controls ecological zonation of salt marsh macrophytes. Ecology 2015, 96, 840–849. [Google Scholar] [CrossRef]
- Alexander, C.R.; Hodgson, J.Y.S.; Brandes, J.A. Sedimentary processes and products in a mesotidal salt marsh environment: Insights from Groves Creek, Georgia. Geo-Mar. Lett. 2017, 37, 345–359. [Google Scholar] [CrossRef]
- Lonard, R.I.; Judd, F.W.; Stalter, R. Biological flora of coastal dunes and wetlands: Borrichia frutescens (L.) DC. J. Coast. Res. 2015, 31, 749–757. [Google Scholar] [CrossRef]
- Pennings, S.C.; Grant, M.-B.; Bertness, M.D. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. J. Ecol. 2005, 93, 159–167. [Google Scholar] [CrossRef]
- Thibodeau, P.M.; Gardner, L.R.; Reeves, H.W. The role of groundwater flow in controlling the spatial distribution of soil salinity and rooted macrophytes in a southeastern salt marsh, USA. Mangroves Salt Marshes 1998, 2, 1–13. [Google Scholar] [CrossRef]
- Gardner, L.R.; Reeves, H.W. Seasonal patterns in the soil water balance of a Spartina marsh site at North Inlet, South Carolina, USA. Wetlands 2002, 22, 467–477. [Google Scholar] [CrossRef]
- Montalvo, M.S.; Grande, E.; Graswell, A.E.; Visser, A.; Arora, B.; Seybold, E.C.; Tatariw, C.; Haskiins, J.C.; Endris, C.A.; Gerbl, F.; et al. A Fresh Take: Seasonal Changes in Terrestrial Freshwater Inputs Impact Salt Marsh Hydrology and Vegetation Dynamics. Estuaries Coasts 2024, 47, 2389–2405. [Google Scholar] [CrossRef]
- Wilson, A.M.; Morris, J.T. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 2012, 108, 27–38. [Google Scholar] [CrossRef]
- Wilson, A.M.; Gardner, L.R. Tidally driven groundwater flow and solute exchange in a marsh: Numerical simulations. Water Resour. Res. 2006, 42, W01405. [Google Scholar] [CrossRef]
- Xin, P.; Gibbes, B.; Ling, L.; Song, Z.; Lockington, D. Soil saturation index of salt marshes subjected to spring-neap tides: A new variable for describing marsh soil aeration condition. Hydrol. Process. 2010, 24, 2564–2577. [Google Scholar] [CrossRef]
- Wiegert, R.G.; Freeman, B.J. Tidal Salt Marshes of the Southeast Atlantic Coast: A Community Profile; U.S. Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1990. [CrossRef]
- McKee, K.L.; Patrick, W.H., Jr. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review. Estuaries 1988, 11, 143–151. [Google Scholar] [CrossRef]
- Hladik, C.M.; Alber, M.; Schalles, J.F. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens. Environ. 2013, 139, 318–330. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Gardner, L.R. Role of geomorphic and hydraulic parameters in governing pore water seepage from salt marsh sediments. Water Resour. Res. 2005, 41, W07010. [Google Scholar] [CrossRef]
- Schultz, G.; Ruppel, C. Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interface. J. Hydrol. 2002, 260, 255–269. [Google Scholar] [CrossRef]
- Moffett, K.B.; Gorelick, S.M. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences. Water Resour. Res. 2016, 52, 1729–1745. [Google Scholar] [CrossRef]
Parameter | Grays Creek (GC) | St. Simons Island (SSI) | Point Peter (PP) |
---|---|---|---|
Minimum Elevation (m) | 0.03 | −0.50 | −0.48 |
Maximum Elevation (m) | 0.92 | 1.79 | 0.98 |
Elevation Change (m) | 0.88 | 2.28 | 1.45 |
Median Elevation (m) | 0.72 | 0.70 | 0.58 |
Mean Elevation (m) | 0.70 | 0.74 | 0.55 |
Standard Deviation (m) | 0.18 | 0.36 | 0.28 |
Transect Length (m) | 221 | 216 | 212 |
Electrode 0 Distance to Creek (m) | 56 | 51 | 47 |
Sample Date | Precipitation (cm) | Tidal Amplitude (m) |
---|---|---|
Gray’s Creek (GC) | ||
10/09/2015 | 1.2 | 2.3 |
03/04/2016 | 1.7 | 1.8 |
St. Simons Island (SSI) | ||
10/11/2015 | 0.4 | 1.9 |
03/06/2016 | 1.0 | 1.7 |
Point Peter (PP) | ||
10/10/2015 | 3.0 | 1.7 |
03/05/2016 | 0.5 | 1.5 |
Sample Date | Depth | Salinity | SPC | Depth | Salinity | SPC | Depth | Salinity | SPC |
---|---|---|---|---|---|---|---|---|---|
Grays Creek | GC T1A | GC T1E | GC T1H | ||||||
11/14/2014 | 40 | 37.5 | 56,329 | 30 | 36.3 | 54,050 | 30 | 35.8 | 54,024 |
03/20/2015 | 90 | 29.0 | 44,801 | 90 | 26.8 | 41,650 | 90 | 30.0 | 46,206 |
07/31/2015 | 90 | 24.3 | 38,580 | 90 | 23.8 | 37,590 | 90 | 22.2 | 35,390 |
10/09/2015 | - | - | - | 90 | 26.9 | 33,854 | 90 | 23.7 | 32,063 |
03/04/2016 | 90 | 25.2 | 39,379 | 90 | 23.1 | 36,438 | 90 | 22.8 | 36,118 |
07/22/2016 | 90 | 19.8 | 31,766 | 90 | 19.8 | 31,820 | 90 | 18.5 | 29,880 |
St. Simons | SSI T1A | SSI T1E | SSI T1H | ||||||
11/01/2014 | 70 | 35.6 | 53,867 | 50 | 33.7 | 51,160 | 30 | 32.6 | 49,761 |
03/21/2015 | 90 | 38.3 | 55,286 | 60 | 34.4 | 51,829 | 90 | 36.6 | 52,648 |
07/25/2015 | 90 | 35.2 | 53,796 | 90 | 27.5 | 42,830 | 90 | 31.3 | 48,200 |
10/11/2015 | 90 | 36.0 | 48,002 | - | - | - | - | - | - |
03/06/2016 | 90 | 35.9 | 54,289 | - | - | - | - | - | - |
07/24/2016 | 90 | 34.1 | 51,882 | 60 | 30.9 | 47,596 | 90 | 28.6 | 44,410 |
Point Peter | PP T1A | PP T1E | PP T1H | ||||||
11/02/2014 | 40 | 20.3 | 32,409 | 50 | 15.5 | 25,282 | 50 | 17.0 | 27,629 |
03/28/2015 | 90 | 26.9 | 42,665 | 90 | 32.2 | 54,160 | 90 | 22.5 | 35,562 |
07/26/2015 | 90 | 25.0 | 39,412 | 90 | 22.8 | 36,084 | 90 | 18.4 | 24,773 |
10/10/2015 | - | - | - | 90 | 22.8 | 38,115 | 90 | 23.0 | - |
03/05/2016 | - | - | - | 90 | 24.6 | 38,710 | 90 | 22.6 | 35,721 |
07/23/2016 | - | - | - | 90 | 21.6 | 34,300 | 90 | 17.3 | 28,308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, J.L.; Hladik, C.M. Shallow Hydrostratigraphy Beneath Marsh Platforms: Insights from Electrical Resistivity Tomography. Water 2025, 17, 144. https://doi.org/10.3390/w17020144
Kelly JL, Hladik CM. Shallow Hydrostratigraphy Beneath Marsh Platforms: Insights from Electrical Resistivity Tomography. Water. 2025; 17(2):144. https://doi.org/10.3390/w17020144
Chicago/Turabian StyleKelly, Jacque L., and Christine M. Hladik. 2025. "Shallow Hydrostratigraphy Beneath Marsh Platforms: Insights from Electrical Resistivity Tomography" Water 17, no. 2: 144. https://doi.org/10.3390/w17020144
APA StyleKelly, J. L., & Hladik, C. M. (2025). Shallow Hydrostratigraphy Beneath Marsh Platforms: Insights from Electrical Resistivity Tomography. Water, 17(2), 144. https://doi.org/10.3390/w17020144