Modeling the Ecological Preferences and Adaptive Capacities of Kentucky Bluegrass Based on Water Availability Using Various Machine Learning Algorithms
Abstract
1. Introduction
- Identify key environmental variables influencing the habitat suitability of P. pratensis in Fars province.
- Compare the performance of six machine learning algorithms (RF, SVM, BRT, MDA, FDA, GLM) in modeling habitat suitability.
- Map the current distribution of suitable habitats and identify priority areas for conservation and management.
2. Materials and Methods
2.1. Study Area
2.2. Kentucky Bluegrass Data
2.3. Environmental Variables
2.4. Effective Variable Collinearity Test
2.5. Models Used for the Habitat Suitability of Kentucky Bluegrass
2.5.1. BRT Model
2.5.2. FDA Model
2.5.3. GLM
2.5.4. MDA Model
2.5.5. SVM Model
2.5.6. RF Model
2.6. Model Processing
2.7. Variable Importance Measures
2.8. Precision of Models
3. Result
3.1. Habitat Suitability of Kentucky Bluegrass Based on Machine Learning Models
3.2. Variable Importance Analysis
3.3. Model Accuracy Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bushman, B.S.; Joshi, A.; Johnson, P.G. Molecular Markers Improve Breeding Efficiency in Apomictic Poa Pratensis L. Agronomy 2018, 8, 17. [Google Scholar] [CrossRef]
- Ghanbari, M.A.; Salehi, H.; Moghadam, A. Genetic diversity assessment of Iranian Kentucky bluegrass accessions: I. ISSR markers and their association with habitat suitability within and between different ecoregions. Mol. Biotechnol. 2022, 64, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Palit, R.; Gramig, G.; DeKeyser, E.S. Kentucky bluegrass invasion in the northern Great Plains and prospective management approaches to mitigate its spread. Plants 2021, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.R.; Seetharam, A.S.; Albert, P.S.; AuBuchon-Elder, T.; Birchler, J.A.; Buckler, E.S.; Gillespie, L.J.; Hufford, M.B.; Llaca, V.; Romay, M.C. A happy accident: A novel turfgrass reference genome. G3 Genes Genom. Genet. 2023, 13, jkad073. [Google Scholar] [CrossRef]
- Raggi, L.; Bitocchi, E.; Russi, L.; Marconi, G.; Sharbel, T.F.; Veronesi, F.; Albertini, E. Understanding genetic diversity and population structure of a Poa pratensis worldwide collection through morphological, nuclear and chloroplast diversity analysis. PLoS ONE 2015, 10, e0124709. [Google Scholar] [CrossRef]
- Ghanbari, M.A.; Salehi, H.; Jowkar, A. Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: II. Nuclear DNA Content and Its Association with Morphological and Geographical Features. Mol. Biotechnol. 2023, 65, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, J.; Talebi, A.; Doostmohammadi, M.; Manafzadeh, S.; Asgarpour, Z.; Schneeweiss, G.M. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 2019, 9, 12991. [Google Scholar] [CrossRef] [PubMed]
- Azizi, K.; Soltani, Z.; Aliakbarpour, M.; Rezanezhad, H.; Kalantari, M. Bionomics of phlebotomine sand flies in different climates of Lleishmaniasis in Fars Province, Southern Iran. J. Arthropod. Borne Dis. 2022, 16, 148. [Google Scholar]
- Naderi, M. Extreme climate events under global warming in northern Fars Province, southern Iran. Theor. Appl. Climatol. 2020, 142, 1221–1243. [Google Scholar] [CrossRef]
- Rahimi, J.; Laux, P.; Khalili, A. Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Köppen–Geiger climate zones. Theor. Appl. Climatol. 2020, 141, 183–199. [Google Scholar] [CrossRef]
- Cunze, S.; Heydel, F.; Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 2013, 8, e67909. [Google Scholar] [CrossRef]
- Yousefi, M.; Kafash, A.; Valizadegan, N.; Ilanloo, S.S.; Rajabizadeh, M.; Malekoutikhah, S.; Yousefkhani, S.S.H.; Ashrafi, S. Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemp. Probl. Ecol. 2019, 12, 394–403. [Google Scholar] [CrossRef]
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef]
- Hatfield, J. Turfgrass and climate change. Agr. J. 2017, 109, 1708–1718. [Google Scholar] [CrossRef]
- Wellstein, C.; Chelli, S.; Campetella, G.; Bartha, S.; Galiè, M.; Spada, F.; Canullo, R. Intraspecific phenotypic variability of plant functional traits in contrasting mountain grassland habitats. Biodivers. Conserv. 2013, 22, 2353–2374. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological niches and geographic distributions. In Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Sánchez-Mercado, A.; Ferrer-Paris, J.; Franklin, J. Mapping species distributions: Spatial inference and prediction. Oryx 2010, 44, 615. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Hadian, J.; Saharkhiz, M.J.; Ebrahimi, S.N. Variation in the phytochemical contents and antioxidant activity of Glycyrrhiza glabra populations collected in Iran. Ind. Crop. Prod. 2019, 137, 248–259. [Google Scholar] [CrossRef]
- Rahimian Boogar, A.; Salehi, H.; Pourghasemi, H.R.; Blaschke, T. Predicting habitat suitability and conserving Juniperus spp. habitat using SVM and maximum entropy machine learning techniques. Water 2019, 11, 2049. [Google Scholar] [CrossRef]
- Dastres, E.; Rabiei-Dastjerdi, H.; Esmaeili, H.; Amiri, M.; Karami, A.; Gheisari, M. Harnessing machine learning to predict habitat suitability of medicinal plants: Insights from Oliveria decumbens under environmental change. Spat. Inf. Res. 2025, 33, 1–19. [Google Scholar] [CrossRef]
- Jurišić, M.; Radočaj, D.; Plaščak, I.; Rapčan, I. A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species. Remote Sens. 2022, 14, 3054. [Google Scholar] [CrossRef]
- Rahmanian, S.; Pourghasemi, H.R.; Pouyan, S.; Karami, S. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Environ. Monit. Assess. 2021, 193, 759. [Google Scholar] [CrossRef]
- Sittaro, F.; Hutengs, C.; Vohland, M. Which factors determine the invasion of plant species? Machine learning based habitat modelling integrating environmental factors and climate scenarios. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103158. [Google Scholar] [CrossRef]
- Dastres, E.; Sarvestani, G.S.; Edalat, M.; Pourghasemi, H.R. Habitat suitability modeling of dominant weed in canola (Brassica napus) fields using machine learning techniques. Weed Sci. 2025, 73, e35. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Yousefi, S.; Dastres, E.; Edalat, M.; Pouyan, S.; Eskandari, S. Modeling and prediction of habitat suitability for Ferula gummosa medicinal plant in a mountainous area. Nat. Res. Res. 2021, 30, 4861–4884. [Google Scholar] [CrossRef]
- Dastres, E.; Rabiei-Dastjerdi, H.; Esmaeili, H.; Amiri, M.; Sonboli, A.; Mirjalili, M.H. Modeling habitat suitability for endangered herb (Salvia leriifolia Benth) using innovative hybrid machine learning algorithms. Environ. Sustain. Indic. 2025, 26, 100694. [Google Scholar] [CrossRef]
- Hojati, M.; Naderi, R.; Edalat, M.; Pourghasemi, H.R. Modelling key ecological factors influencing the distribution and content of silymarin antioxidant in Silybum marianum L. PLoS ONE 2025, 20, e0322442. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, S.; Pouyan, S.; Karami, S.; Pourghasemi, H.R. Predictive habitat suitability models for Teucrium polium L. using boosted regression trees. In Computers in Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 245–254. [Google Scholar]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Rodríguez de Rivera, O.; López-Quílez, A. Development and comparison of species distribution models for forest inventories. ISPRS Int. J. Geo-Inf. 2017, 6, 176. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Wang, J.-J.; Huang, Y.-F.; Long, H.-Y. Water and salt movement in different soil textures under various negative irrigating pressures. J. Integr. Agric. 2016, 15, 1874–1882. [Google Scholar] [CrossRef]
- Husson, O.; Brunet, A.; Babre, D.; Charpentier, H.; Durand, M.; Sarthou, J.-P. Conservation agriculture systems alter the electrical characteristics (Eh, pH, and EC) of four soil types in France. Soil Till. Res. 2018, 176, 57–68. [Google Scholar] [CrossRef]
- Kearney, K.M.; Harley, J.B.; Nichols, J.A. Inverse distance weighting to rapidly generate large simulation datasets. J. Biomech. 2023, 158, 111764. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, Z.; Rezaei, A.; Maleki, J. Improvement of water table interpolation and groundwater storage volume using fuzzy computations. Environ. Monit. Assess. 2019, 191, 401. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Edalat, M.; Jahangiri, E.; Dastras, E.; Pourghasemi, H.R. Prioritization of effective factors on Zataria multiflora habitat suitability and its spatial modeling. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 411–427. [Google Scholar]
- Froeschke, B.F.; Roux-Osovitz, M.; Baker, M.L.; Hampson, E.G.; Nau, S.L.; Thomas, A. The use of Boosted Regression Trees to predict the occurrence and quantity of Staphylococcus aureus in recreational marine waterways. Water 2024, 16, 1283. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 1994, 89, 1255–1270. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Discriminant analysis by Gaussian mixtures. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 155–176. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hosseini, N.; Mehrabian, A.; Nasab, F.K.; Mostafavi, H.; Ghorbanpour, M. Forecasting climate change effects on the potential distribution of Zhumeria majdae as an endangered monotypic endemic species: A Maxent modeling approach. BMC Ecol. Evol. 2025, 25, 85. [Google Scholar] [CrossRef]
- Hou, C.; Xie, Y.; Zhang, Z. An improved convolutional neural network-based indoor localization by using Jenks natural breaks algorithm. China Commun. 2022, 19, 291–301. [Google Scholar] [CrossRef]
- Juang, S.-R.; Chen, S.-H.; Wu, C.-F. An Expert-based assessment model for evaluating habitat suitability of pond-breeding amphibians. Sustainability 2017, 9, 278. [Google Scholar] [CrossRef]
- Yuan, H.-S.; Wei, Y.-L.; Wang, X.-G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 2015, 17, 140–145. [Google Scholar] [CrossRef]
- Feng, L.; Tian, X.; El-Kassaby, Y.A.; Qiu, J.; Feng, Z.; Sun, J.; Wang, G.; Wang, T. Predicting suitable habitats of Melia azedarach L. in China using data mining. Sci. Rep. 2022, 12, 12617. [Google Scholar] [CrossRef]
- Bektas, V.; Bettinger, P.; Nibbelink, N.; Siry, J.; Merry, K.; Henn, K.A.; Stober, J. Habitat suitability modeling of rare Turkeybeard (Xerophyllum asphodeloides) species in the Talladega National Forest, Alabama, USA. Forests 2022, 13, 490. [Google Scholar] [CrossRef]
- Gilani, H.; Goheer, M.A.; Ahmad, H.; Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020, 111, 106049. [Google Scholar] [CrossRef]
- Miles, J. Tolerance and variance inflation factor. In Wiley Statsref: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Aldiansyah, S.; Risna, R. Modeling the bioclimatic range of Musa ingens (giant highland banana) under conditions of climate change scenarios. Environ. Nat. Res. J. 2024, 22, 394–407. [Google Scholar] [CrossRef]
- Gilbert, A.A.; Fraser, L.H. Effects of salinity and clipping on biomass and competition between a halophyte and a glycophyte. Plant Ecol. 2013, 214, 433–442. [Google Scholar] [CrossRef]
- Sabzmeydani, E.; Sedaghathoor, S.; Hashemabadi, D. Progesterone and salicylic acid elevate tolerance of Poa pratensis to salinity stress. Russ. J. Plant Physiol. 2020, 67, 285–293. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Z.; Jin, Y.; Sun, H.; Xie, F.; Zhang, L. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. Int. J. Mol. Sci. 2019, 20, 1289. [Google Scholar] [CrossRef]
- Schiavon, M.; Serena, M.; Leinauer, B.; Sallenave, R.; Baird, J.H. Seeding date and irrigation system effects on establishment of warm-season turfgrasses. Agron. J. 2015, 107, 880–886. [Google Scholar] [CrossRef]
- Alves, J.; Innes, J.F. Minimal clinically-important differences for the “Liverpool Osteoarthritis in Dogs”(LOAD) and the “Canine Orthopedic Index”(COI) in dogs with osteoarthritis. PLoS ONE 2023, 18, e0291881. [Google Scholar] [CrossRef]
- White, N.; Parsons, R.; Collins, G.; Barnett, A. Evidence of questionable research practices in clinical prediction models. BMC Med. 2023, 21, 339. [Google Scholar] [CrossRef]
- Jin, J.; Yan, H.; Bie, Q.; Wang, G.; Su, G. A method of calculating the spatial difference of human settlements in urban blocks based on floor area ratio. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 825, 012034. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Zhang, H.T.; Guo, W.Y.; Wang, W.T. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecol. Evol. 2023, 13, e10747. [Google Scholar] [CrossRef]
- Chauvier-Mendes, Y.; Pollock, L.J.; Verburg, P.H.; Karger, D.N.; Pellissier, L.; Lavergne, S.; Zimmermann, N.E.; Thuiller, W. Transnational conservation to anticipate future plant shifts in Europe. Nat. Ecol. Evol. 2024, 8, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Albajes-Eizagirre, A.; Solanes, A.; Fullana, M.A.; Ioannidis, J.P.; Fusar-Poli, P.; Torrent, C.; Sole, B.; Bonnín, C.M.; Vieta, E.; Mataix-Cols, D. Meta-analysis of voxel-based neuroimaging studies using seed-based d mapping with permutation of subject images (SDM-PSI). J. Vis. Exp. 2019, 153, e59841. [Google Scholar]
- Lai, W.; Khan, A.A. Modeling dam-break flood over natural rivers using discontinuous Galerkin method. J. Hydrodyn. 2012, 24, 467–478. [Google Scholar] [CrossRef]
- Wang, G.; Zhong, L.; Zhou, S.; Liu, Q.; Li, Q.; Fu, Q.; Wang, L.; Huang, R.; Wang, G.; Li, X. Jet breaking tools for natural gas hydrate exploitation and their support technologies. Nat. Gas. Ind. B 2018, 5, 312–318. [Google Scholar] [CrossRef]
- Niazian, M.; Niedbała, G. Machine learning for plant breeding and biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Crawford, B.A.; Maerz, J.C.; Moore, C.T. Expert-informed habitat suitability analysis for at-risk species assessment and conservation planning. J. Fish. Wildl. Manag. 2020, 11, 130–150. [Google Scholar] [CrossRef]





| Poor | Moderate | Good | Good Very | Excellent |
|---|---|---|---|---|
| 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1 |
| Factors | Tolerance | VIF |
|---|---|---|
| Elevation (m) | 0.75 | 2.01 |
| Distance from rivers (m) | 0.13 | 4.91 |
| Distance from roads (m) | 0.37 | 2.68 |
| Sand (%) | 0.31 | 1.25 |
| Silt (%) | 0.21 | 3.72 |
| Slope degree | 0.32 | 3.09 |
| Mean annual temperature (°C) | 0.78 | 1.34 |
| Clay (%) | 0.15 | 4.45 |
| Plan curvature (100/m) | 0.80 | 1.23 |
| EC (dS/m) | 0.33 | 3.03 |
| pH | 0.80 | 1.24 |
| Mean annual rainfall (mm) | 0.16 | 4.78 |
| Aspect | 0.11 | 4.98 |
| GLM | FDA | MDA | BRT | SVM | RF | |
|---|---|---|---|---|---|---|
| Low | 32.54 | 30.31 | 41.3 | 34.16 | 22.83 | 27.12 |
| Moderate | 23.47 | 26.92 | 15.76 | 24.59 | 29.71 | 28.28 |
| High | 24.91 | 23.92 | 14.71 | 12.56 | 29.46 | 24.94 |
| Very high | 19.09 | 18.85 | 28.22 | 28.69 | 18 | 19.67 |
| Area Under the Curve | |||||
|---|---|---|---|---|---|
| Test Result Variable(s) | Area | Std. Error a | Asymptotic Sig. b | Asymptotic 95% Confidence Interval | |
| Lower Bound | Upper Bound | ||||
| SVM | 0.822 | 0.076 | 0.003 | 0.673 | 0.971 |
| RF | 0.889 | 0.063 | 0.000 | 0.765 | 1.000 |
| MDA | 0.751 | 0.092 | 0.019 | 0.572 | 0.931 |
| GLM | 0.787 | 0.087 | 0.007 | 0.616 | 0.958 |
| FDA | 0.778 | 0.086 | 0.010 | 0.610 | 0.946 |
| BRT | 0.764 | 0.089 | 0.014 | 0.589 | 0.940 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanbari, M.A.; Dastres, E.; Salehi, H.; Edalat, M.; Pasternak, T. Modeling the Ecological Preferences and Adaptive Capacities of Kentucky Bluegrass Based on Water Availability Using Various Machine Learning Algorithms. Water 2025, 17, 2849. https://doi.org/10.3390/w17192849
Ghanbari MA, Dastres E, Salehi H, Edalat M, Pasternak T. Modeling the Ecological Preferences and Adaptive Capacities of Kentucky Bluegrass Based on Water Availability Using Various Machine Learning Algorithms. Water. 2025; 17(19):2849. https://doi.org/10.3390/w17192849
Chicago/Turabian StyleGhanbari, Mohammad A., Emran Dastres, Hassan Salehi, Mohsen Edalat, and Taras Pasternak. 2025. "Modeling the Ecological Preferences and Adaptive Capacities of Kentucky Bluegrass Based on Water Availability Using Various Machine Learning Algorithms" Water 17, no. 19: 2849. https://doi.org/10.3390/w17192849
APA StyleGhanbari, M. A., Dastres, E., Salehi, H., Edalat, M., & Pasternak, T. (2025). Modeling the Ecological Preferences and Adaptive Capacities of Kentucky Bluegrass Based on Water Availability Using Various Machine Learning Algorithms. Water, 17(19), 2849. https://doi.org/10.3390/w17192849

