Prevalence and Resistance Patterns of Campylobacter spp. and Arcobacter spp. in Portuguese Water Bodies
Abstract
1. Introduction
2. Materials and Methods
2.1. Water Sample Collection
2.2. Campylobacter spp. and Arcobacter spp. Isolation
2.3. Molecular Detection and Identification for Campylobacter spp. and Arcobacter spp.
2.4. Isolate Genotyping
2.5. Antibiotic Susceptibility Testing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Burden of Disease Attributable to Unsafe Drinking-Water, Sanitation and Hygiene, 2019 Update; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-007561-0. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-154995-0. [Google Scholar]
- Gupta, T.; Pratap, S.; Prashant, S.; Avinash, R.; Agarwal, K. Measurement, Analysis and Remediation of Environmental Pollutants. In Energy, Environment, and Sustainability; Springer: Singapore, 2019; ISBN 978-981-15-0540-9. [Google Scholar]
- Elmberg, J.; Berg, C.; Lerner, H.; Waldenström, J.; Hessel, R. Potential Disease Transmission from Wild Geese and Swans to Livestock, Poultry and Humans: A Review of the Scientific Literature from a One Health Perspective. Infect. Ecol. Epidemiol. 2017, 7, 1300450. [Google Scholar] [CrossRef]
- Collado, L.; Figueras, M.J. Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin. Microbiol. Rev. 2011, 24, 174–192. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Davydova, A.; Fastl, C.; Mughini-Gras, L.; Bai, L.; Kubota, K.; Hoffmann, S.; Rachmawati, T.; Pires, S.M. Source Attribution Studies of Foodborne Pathogens, 2010–2023: A Review and Collection of Estimates. Food Microbiol. 2025, 131, 104812. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, I.; Luís, Â.; Domingues, F.; Oleastro, M.; Pereira, L.; Ferreira, S. The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 244. [Google Scholar] [CrossRef]
- Garrity, G.M.; Bell, J.A.; Lilburn, T.; Order, I. Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M., Eds.; The Proteobacteria (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria); Springer: New York, NY, USA, 2005; Volume 2, Part C; p. 1145. [Google Scholar]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- Weller, D.L.; Ray, L.C.; Payne, D.C.; Griffin, P.M.; Hoekstra, R.M.; Rose, E.B.; Bruce, B.B. An Enhanced Method for Calculating Trends in Infections Caused by Pathogens Transmitted Commonly Through Food. medRxiv 2022. [Google Scholar] [CrossRef]
- Keithlin, J.; Sargeant, J.; Thomas, M.K.; Fazil, A. Systematic Review and Meta-Analysis of the Proportion of Campylobacter Cases That Develop Chronic Sequelae. BMC Public Health 2014, 14, 1203. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the Pathogenesis and Resistance of Arcobacter: A Review. Crit. Rev. Microbiol. 2016, 42, 364–383. [Google Scholar] [CrossRef]
- Vandenberg, O.; Dediste, A.; Houf, K.; Ibekwem, S.; Souayah, H.; Cadranel, S.; Douat, N.; Zissis, G.; Butzler, J.-P.; Vandamme, P. Arcobacter Species in Humans. Emerg. Infect. Dis. 2004, 10, 1863–1867. [Google Scholar] [CrossRef]
- Duarte, A.; Pereira, L.; Lemos, M.L.; Pinto, M.; Rodrigues, J.C.; Matias, R.; Santos, A.; Oleastro, M. Epidemiological Data and Antimicrobial Resistance of Campylobacter spp. in Portugal from 13 Years of Surveillance. Pathogens 2024, 13, 147. [Google Scholar] [CrossRef]
- Man, S.M. The Clinical Importance of Emerging Campylobacter Species. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 669–685. [Google Scholar] [CrossRef]
- International Commission on Microbiological Specifications for Foods. Microorganisms in Foods 7: Microbiological Testing in Food Safety Management, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-68460-4. [Google Scholar]
- Shange, N.; Gouws, P.; Hoffman, L.C. Campylobacter and Arcobacter Species in Food-Producing Animals: Prevalence at Primary Production and During Slaughter. World J. Microbiol. Biotechnol. 2019, 35, 146. [Google Scholar] [CrossRef]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The Role of Poultry Meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef]
- Nilsson, A.; Johansson, C.; Skarp, A.; Kaden, R.; Bertilsson, S.; Rautelin, H. Survival of Campylobacter jejuni and Campylobacter coli Water Isolates in Lake and Well Water. APMIS 2018, 126, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Kase, J.A.; Harrison, L.M.; Balan, K.V.; Babu, U.; Chen, Y.; Macarisin, D.; Kwon, H.J.; Zheng, J.; Stevens, E.L.; et al. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Penny, C.; Ragimbeau, C.; Schets, F.M.; Blaak, H.; Duim, B.; Wagenaar, J.A.; de Boer, A.; Cauchie, H.M.; Mossong, J.; et al. Quantifying Potential Sources of Surface Water Contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 2016, 101, 36–45. [Google Scholar] [CrossRef]
- Martins, R.; Mateus, C.; Domingues, F.; Bücker, R.; Oleastro, M.; Ferreira, S. Effect of Atmospheric Conditions on Pathogenic Phenotypes of Arcobacter butzleri. Microorganisms 2022, 10, 2409. [Google Scholar] [CrossRef]
- Good, L.; Miller, W.G.; Niedermeyer, J.; Osborne, J.; Siletzky, R.M.; Carver, D.; Kathariou, S. Strain-Specific Differences in Survival of Campylobacter spp. in Naturally Contaminated Turkey Feces and Water. Appl. Environ. Microbiol. 2019, 85, e01579-19. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Carroll, C.; Jordan, K.N. Environmental Survival Mechanisms of the Foodborne Pathogen Campylobacter jejuni. J. Appl. Microbiol. 2006, 100, 623–632. [Google Scholar] [CrossRef]
- Fera, M.T.; Maugeri, T.L.; Gugliandolo, C.; La Camera, E.; Lentini, V.; Favaloro, A.; Bonanno, D.; Carbone, M. Induction and Resuscitation of Viable Nonculturable Arcobacter butzleri Cells. Appl. Environ. Microbiol. 2008, 74, 3266–3268. [Google Scholar] [CrossRef]
- Sopwith, W.; Birtles, A.; Matthews, M.; Fox, A.; Gee, S.; Painter, M.; Regan, M.; Syed, Q.; Bolton, E. Identification of Potential Environmentally Adapted Campylobacter jejuni Strain, United Kingdom. Emerg. Infect. Dis. 2008, 14, 1769–1773. [Google Scholar] [CrossRef]
- Miller, W.G.; Parker, C.T.; Rubenfield, M.; Mendz, G.L.; Wösten, M.M.S.M.; Ussery, D.W.; Stolz, J.F.; Binnewies, T.T.; Hallin, P.F.; Wang, G.; et al. The Complete Genome Sequence and Analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE 2007, 2, e1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, J.; Li, X.; Tiwari, A.; Gao, S.; Zhou, X.; Sun, X.; O’Brien, J.W.; Coin, L.; Hai, F.; et al. Wastewater-Based Epidemiology of Campylobacter spp.: A Systematic Review and Meta-Analysis of Influent, Effluent, and Removal of Wastewater Treatment Plants. Sci. Total Environ. 2023, 903, 166410. [Google Scholar] [CrossRef]
- Hsu, T.T.D.; Lee, J. Global Distribution and Prevalence of Arcobacter in Food and Water. Zoonoses Public Health 2015, 62, 579–589. [Google Scholar] [CrossRef]
- Pitkänen, T. Review of Campylobacter spp. in Drinking and Environmental Waters. J. Microbiol. Methods 2013, 95, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.U.; Andree, K.B.; Salas-Massó, N.; Fernandez-Tejedor, M.; Sanjuan, A.; Figueras, M.J.; Furones, M.D. Improved Culture Enrichment Broth for Isolation of Arcobacter-like Species from the Marine Environment. Sci. Rep. 2020, 10, 14547. [Google Scholar] [CrossRef]
- World Health Organization. Campylobacter: Background Document for the WHO Guidelines for Drinking-Water Quality and the WHO Guidelines on Sanitation and Health; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Moreira, N.A.; Bondelind, M. Safe Drinking Water and Waterborne Outbreaks. J. Water Health 2017, 15, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Oleastro, M.; Alves, F.; Liassine, N.; Lowe, D.M.; Benejat, L.; Ducounau, A.; Jehanne, Q.; Borges, V.; Gomes, J.P.; et al. Recurrent Campylobacter jejuni Infections with In Vivo Selection of Resistance to Macrolides and Carbapenems: Molecular Characterization of Resistance Determinants. Microbiol. Spectr. 2023, 11, e0107023. [Google Scholar] [CrossRef]
- Chieffi, D.; Fanelli, F.; Fusco, V. Arcobacter butzleri: Up-to-Date Taxonomy, Ecology, and Pathogenicity of an Emerging Pathogen. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2071–2109. [Google Scholar] [CrossRef]
- Dekker, D.; Eibach, D.; Boahen, K.G.; Akenten, C.W.; Pfeifer, Y.; Zautner, A.E.; Mertens, E.; Krumkamp, R.; Jaeger, A.; Flieger, A.; et al. Fluoroquinolone-Resistant Salmonella enterica, Campylobacter spp., and Arcobacter butzleri from Local and Imported Poultry Meat in Kumasi, Ghana. Foodborne Pathog. Dis. 2019, 16, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Isidro, J.; Ferreira, S.; Pinto, M.; Domingues, F.; Oleastro, M.; Gomes, J.P.; Borges, V. Virulence and Antibiotic Resistance Plasticity of Arcobacter butzleri: Insights on the Genomic Diversity of an Emerging Human Pathogen. Infect. Genet. Evol. 2020, 80, 104213. [Google Scholar] [CrossRef]
- Rathlavath, S.; Kohli, V.; Singh, A.S.; Lekshmi, M.; Tripathi, G.; Kumar, S.; Nayak, B.B. Virulence Genotypes and Antimicrobial Susceptibility Patterns of Arcobacter butzleri Isolated from Seafood and Its Environment. Int. J. Food Microbiol. 2017, 263, 32–37. [Google Scholar] [CrossRef]
- Šilha, D.; Pejchalová, M.; Šilhová, L. Susceptibility to 18 Drugs and Multidrug Resistance of Arcobacter Isolates from Different Sources within the Czech Republic. J. Glob. Antimicrob. Resist. 2017, 9, 74–77. [Google Scholar] [CrossRef]
- Vicente-Martins, S.; Oleastro, M.; Domingues, F.C.; Ferreira, S. Arcobacter spp. at Retail Food from Portugal: Prevalence, Genotyping and Antibiotics Resistance. Food Control 2018, 85, 107–112. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2021–2022. EFSA J. 2024, 22, e8583. [Google Scholar] [CrossRef]
- Marti, E.; Variatza, E.; Balcazar, J.L. The Role of Aquatic Ecosystems as Reservoirs of Antibiotic Resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef]
- Kunhikannan, S.; Thomas, C.J.; Franks, A.E.; Mahadevaiah, S.; Kumar, S.; Petrovski, S. Environmental Hotspots for Antibiotic Resistance Genes. Microbiologyopen 2021, 10, e1197. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, L.; Zhang, Y.N. Antibiotic Resistance Genes in Aquatic Systems: Sources, Transmission, and Risks. Aquat. Toxicol. 2025, 284, 107392. [Google Scholar] [CrossRef] [PubMed]
- Jokinen, C.C.; Koot, J.M.; Carrillo, C.D.; Gannon, V.P.J.; Jardine, C.M.; Mutschall, S.K.; Topp, E.; Taboada, E.N. An Enhanced Technique Combining Pre-Enrichment and Passive Filtration Increases the Isolation Efficiency of Campylobacter jejuni and Campylobacter coli from Water and Animal Fecal Samples. J. Microbiol. Methods 2012, 91, 506–513. [Google Scholar] [CrossRef]
- Linton, D.; Owen, R.J.; Stanley, J. Rapid Identification by PCR of the Genus Campylobacter and of Five Campylobacter Species Enteropathogenic for Man and Animals. Res. Microbiol. 1996, 147, 707–718. [Google Scholar] [CrossRef]
- Harmon, K.M.; Wesley, I.V. Identification of Arcobacter Isolates by PCR. Lett. Appl. Microbiol. 1996, 23, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Houf, K.; Vandamme, P.; Tutenel, A.; De Zutter, L.; Van Hoof, J. Development of a Multiplex PCR Assay for the Simultaneous Detection and Identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol. Lett. 2000, 193, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Douidah, L.; De Zutter, L.; Vandamme, P.; Houf, K. Identification of Five Human and Mammal Associated Arcobacter Species by a Novel Multiplex-PCR Assay. J. Microbiol. Methods 2010, 80, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Yee, E.; Jolley, K.A.; Chapman, M.H. Use of an Improved atpA Amplification and Sequencing Method to Identify Members of the Campylobacteraceae and Helicobacteraceae. Lett. Appl. Microbiol. 2014, 58, 582–590. [Google Scholar] [CrossRef]
- Houf, K.; De Zutter, L.; Van Hoof, J.; Vandamme, P. Assessment of the Genetic Diversity among Arcobacters Isolated from Poultry Products by Using Two PCR-Based Typing Methods. Appl. Environ. Microbiol. 2002, 68, 2172–2178. [Google Scholar] [CrossRef]
- Gabucci, C.; Baldelli, G.; Amagliani, G.; Schiavano, G.F.; Savelli, D.; Russo, I.; Di Lullo, S.; Blasi, G.; Napoleoni, M.; Leoni, F.; et al. Widespread Multidrug Resistance of Arcobacter butzleri Isolated from Clinical and Food Sources in Central Italy. Antibiotics 2023, 12, 1292. [Google Scholar] [CrossRef]
- Takako, T.; Elpita, T.; Hiroyuki, S.; Chiho, K.; Naoaki, M. Prevalence of Campylobacter spp. in Raccoon Dogs and Badgers in Miyazaki Prefecture, Japan. EcoHealth 2021, 18, 241–249. [Google Scholar] [CrossRef]
- Jurinović, L.; Duvnjak, S.; Humski, A.; Ječmenica, B.; Taylor, L.T.; Šimpraga, B.; Krstulović, F.; Zelenika, T.A.; Kompes, G. Genetic Diversity and Resistome Analysis of Campylobacter lari Isolated from Gulls in Croatia. Antibiotics 2023, 12, 1310. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: https://www.eucast.org (accessed on 11 April 2025).
- Jehanne, Q.; Bénéjat, L.; Ducournau, A.; Bessède, E.; Lehours, P. Molecular Cut-off Values for Aliarcobacter butzleri Susceptibility Testing. Microbiol. Spectr. 2022, 10, e01003-22. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2023 Zoonoses Report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Campylobacteriosis. In Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Mulder, A.C.; Franz, E.; de Rijk, S.; Versluis, M.A.J.; Coipan, C.; Buij, R.; Müskens, G.; Koene, M.; Pijnacker, R.; Duim, B.; et al. Tracing the Animal Sources of Surface Water Contamination with Campylobacter jejuni and Campylobacter coli. Water Res. 2020, 187, 116421. [Google Scholar] [CrossRef] [PubMed]
- Mossong, J.; Mughini-Gras, L.; Penny, C.; Devaux, A.; Olinger, C.; Losch, S.; Cauchie, H.M.; Van Pelt, W.; Ragimbeau, C. Human Campylobacteriosis in Luxembourg, 2010-2013: A Case-Control Study Combined with Multilocus Sequence Typing for Source Attribution and Risk Factor Analysis. Sci. Rep. 2016, 6, 20939. [Google Scholar] [CrossRef]
- Mughini Gras, L.; Smid, J.H.; Wagenaar, J.A.; de Boer, A.G.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Busani, L.; van Pelt, W. Risk Factors for Campylobacteriosis of Chicken, Ruminant, and Environmental Origin: A Combined Case-Control and Source Attribution Analysis. PLoS ONE 2012, 7, e42599. [Google Scholar] [CrossRef]
- Ansarifar, E.; Riahi, S.M.; Tasara, T.; Sadighara, P.; Zeinali, T. Campylobacter Prevalence from Food, Animals, Human and Environmental Samples in Iran: A Systematic Review and Meta-Analysis. BMC Microbiol. 2023, 23, 126. [Google Scholar] [CrossRef]
- Reichelt, B.; Szott, V.; Epping, L.; Semmler, T.; Merle, R.; Roesler, U.; Friese, A. Transmission Pathways of Campylobacter spp. at Broiler Farms and Their Environment in Brandenburg, Germany. Front. Microbiol. 2022, 13, 982693. [Google Scholar] [CrossRef]
- Chala, G.; Eguale, T.; Abunna, F.; Asrat, D.; Stringer, A. Identification and Characterization of Campylobacter Species in Livestock, Humans, and Water in Livestock Owning Households of Peri-Urban Addis Ababa, Ethiopia: A One Health Approach. Front. Public Health 2021, 9, 750551. [Google Scholar] [CrossRef]
- Andrzejewska, M.; Grudlewska-Buda, K.; Śpica, D.; Skowron, K.; Ćwiklińska-Jurkowska, M.; Szady-Grad, M.; Indykiewicz, P.; Wiktorczyk-Kapischke, N.; Klawe, J.J. Genetic Relatedness, Virulence, and Drug Susceptibility of Campylobacter Isolated from Water and Wild Birds. Front. Cell. Infect. Microbiol. 2022, 12, 1005085. [Google Scholar] [CrossRef]
- Chibwe, M.; Odume, O.N.; Nnadozie, C.F. Spatiotemporal Variations in the Occurrence of Campylobacter Species in the Bloukrans and Swartkops Rivers, Eastern Cape, South Africa. Heliyon 2024, 10, e28774. [Google Scholar] [CrossRef] [PubMed]
- Abulreesh, H.H.; Paget, T.A.; Goulder, R. Campylobacter in Waterfowl and Aquatic Environments: Incidence and Methods of Detection. Environ. Sci. Technol. 2006, 40, 7122–7131. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.G.; Roworth, M. An Outbreak of Escherichia coli 0157 and Campylobacteriosis Associated with Contamination of a Drinking Water Supply. Public Health 1996, 110, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Ghosh, A.; Pazhani, G.P.; Shinoda, S. Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria. Front. Public Health 2014, 2, 103. [Google Scholar] [CrossRef] [PubMed]
- Karikari, A.B.; Obiri-Danso, K.; Frimpong, E.H.; Krogfelt, K.A. Multidrug Resistant Campylobacter in Faecal and Carcasses of Commercially Produced Poultry. Afr. J. Microbiol. Res. 2017, 11, 271–277. [Google Scholar] [CrossRef][Green Version]
- Sciortino, S.; Arculeo, P.; Alio, V.; Cardamone, C.; Nicastro, L.; Arculeo, M.; Alduina, R.; Costa, A. Occurrence and Antimicrobial Resistance of Arcobacter spp. Recovered from Aquatic Environments. Antibiotics 2021, 10, 288. [Google Scholar] [CrossRef]
- Uljanovas, D.; Gölz, G.; Brückner, V.; Grineviciene, A.; Tamuleviciene, E.; Alter, T.; Malakauskas, M. Prevalence, Antimicrobial Susceptibility and Virulence Gene Profiles of Arcobacter Species Isolated from Human Stool Samples, Foods of Animal Origin, Ready-to-Eat Salad Mixes and Environmental Water. Gut Pathog. 2021, 13, 76. [Google Scholar] [CrossRef]
- Niyayesh, H.; Rahimi, E.; Shakerian, A.; Khamesipour, F. Arcobacter Species Isolated from Human Stool Samples, Animal Products, Ready-to-Eat Salad Mixes, and Ambient Water: Prevalence, Antimicrobial Susceptibility, and Virulence Gene Profiles. BMC Infect. Dis. 2024, 24, 1368. [Google Scholar] [CrossRef]
- Mateus, C.; Martins, R.; Luís, Â.; Oleastro, M.; Domingues, F.; Pereira, L.; Ferreira, S. Prevalence of Arcobacter: From Farm to Retail—A Systematic Review and Meta-Analysis. Food Control 2021, 128, 108177. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Juárez, O.; Restaino, L. A New Method for Detection of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii Using a Novel Chromogenic Agar. J. Food Prot. 2021, 84, 160–168. [Google Scholar] [CrossRef]
- Austhof, E.; Warner, S.; Helfrich, K.; Pogreba-Brown, K.; Brown, H.E.; Klimentidis, Y.C.; Scallan Walter, E.; Jervis, R.H.; White, A.E. Exploring the Association of Weather Variability on Campylobacter—A Systematic Review. Environ. Res. 2024, 252, 118796. [Google Scholar] [CrossRef]
- Ferreira, S.; Oleastro, M.; Domingues, F. Current Insights on Arcobacter butzleri in Food Chain. Curr. Opin. Food Sci. 2019, 26, 9–17. [Google Scholar] [CrossRef]
- Levican, A.; Collado, L.; Yustes, C.; Aguilar, C.; Figueras, M.J. Higher Water Temperature and Incubation under Aerobic and Microaerobic Conditions Increase the Recovery and Diversity of Arcobacter spp. from Shellfish. Appl. Environ. Microbiol. 2014, 80, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Chukwu, M.O.; King Abia, A.L.; Ubomba-Jaswa, E.; Obi, L.; Dewar, J.B. Characterization and Phylogenetic Analysis of Campylobacter Species Isolated from Paediatric Stool and Water Samples in the Northwest Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2205. [Google Scholar] [CrossRef]
- Chibwe, M.; Odume, O.N.; Nnadozie, C.F. A Review of Antibiotic Resistance among Campylobacter Species in Human, Animal, and Water Sources in South Africa: A One Health Approach. J. Water Health 2023, 21, 9–26. [Google Scholar] [CrossRef]
- Riesenberg, A.; Frömke, C.; Stingl, K.; Feßler, A.T.; Gölz, G.; Glocker, E.O.; Kreienbrock, L.; Klarmann, D.; Werckenthin, C.; Schwarz, S. Antimicrobial Susceptibility Testing of Arcobacter butzleri: Development and Application of a New Protocol for Broth Microdilution. J. Antimicrob. Chemother. 2017, 72, 2769–2774. [Google Scholar] [CrossRef]
- Ferreira, S.; Silva, A.L.; Tomás, J.; Mateus, C.; Domingues, F.; Oleastro, M. Characterization of AreABC, an RND-Type Efflux System Involved in Antimicrobial Resistance of Aliarcobacter butzleri. Antimicrob. Agents Chemother. 2021, 65, e0072921. [Google Scholar] [CrossRef] [PubMed]
- Couto, F.; Martins, I.; Vale, F.; Domingues, F.; Oleastro, M.; Ferreira, S. Insights into Macrolide Resistance in Arcobacter butzleri: Potential Resistance Mechanisms and Impact on Bacterial Fitness and Virulence. J. Antimicrob. Chemother. 2024, 79, 2708–2717. [Google Scholar] [CrossRef]
- Luangtongkum, T.; Shen, Z.; Seng, V.W.; Sahin, O.; Jeon, B.; Liu, P.; Zhang, Q. Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host. Antimicrob. Agents Chemother. 2012, 56, 1300–1308. [Google Scholar] [CrossRef]
- Almofti, Y.A.; Dai, M.; Sun, Y.; Haihong, H.; Yuan, Z. Impact of Erythromycin Resistance on the Virulence Properties and Fitness of Campylobacter jejuni. Microb. Pathog. 2011, 50, 336–342. [Google Scholar] [CrossRef]
Sample Source | N. of Positive Samples/N. Total of Samples (%) | N. of Species/N. of Positive Samples (%) | |||
---|---|---|---|---|---|
C. jejuni | C. coli | C. lari | C. upsaliensis | ||
River | 6/30 (20.0%) | 0/6 (0.0%) | 4/6 (66.7%) | 2/6 (33.3%) | 0/6 (0.0%) |
River tributary | 10/60 (16.7%) | 6/10 (60.0%) | 2/10 (20.0%) | 1/10 (10.0%) | 1/10 (10.0%) |
Spring water | 4/60 (6.7%) | 2/4 (50.0%) | 1/4 (25.0%) | 1/4 (25.0%) | 0/4 (0.0%) |
Total | 20/150 (13.3%) | 8/20 (40.0%) | 7/20 (35.0%) | 4/20 (20.0%) | 1/20 (5.0%) |
Antibiotic | N. of Resistant Isolates/N. of Total Isolates (% Resistance) | ||||
---|---|---|---|---|---|
C. jejuni | C. coli | C. lari | C. upsaliensis | Total | |
n = 8 | n = 9 | n = 9 | n = 1 | n = 27 | |
Ampicillin | 1/8 (12.5%) | 0/9 (0.0%) | 7/9 (77.8%) | 1/1 (100.0%) | 9/27 (33.3%) |
Ciprofloxacin | 1/8 (12.5%) | 1/9 (11.1%) | 0/9 (0.0%) | 0/1 (0.0%) | 2/27 (7.4%) |
Erythromycin | 0/8 (0.0%) | 0/9 (0.0%) | 0/9 (0.0%) | 0/1 (0.0%) | 0/27 (0.0%) |
Gentamicin | 0/8 (0.0%) | 0/9 (0.0%) | 0/9 (0.0%) | 0/1 (0.0%) | 0/27 (0.0%) |
Tetracycline | 1/8 (12.5%) | 3/9 (33.3%) | 1/9 (11.1%) | 0/1 (0.0%) | 5/27 (18.5%) |
MDR profile | 1/8 (12.5%) | 0/9 (0.0%) | 0/9 (0.0%) | 0/1 (0.0%) | 1/27 (3.7%) |
Sample Source | N. of Positive Samples/N. Total of Samples (%) | N. of Species/N. of Positive Samples (%) | ||||
---|---|---|---|---|---|---|
A. butzleri | A. cryaerophilus | A. skirrowii | A. butzleri + A. cryaerophilus | A. butzleri + A. skirrowii | ||
River | 25/25 (100.0%) | 25/25 (100.0%) | 4/25 (16.0%) | 0/25 (0.0%) | 4/25 (16.0%) | 0/25 (0.0%) |
River tributary | 37/50 (74.0%) | 37/37 (100.0%) | 5/37 (13.5%) | 1/37 (2.7%) | 5/37 (13.5%) | 1/37 (2.7%) |
Spring water | 10/50 (20.0%) | 9/10 (90.0%) | 2/10 (20.0%) | 0/10 (0.0%) | 1/10 (10.0%) | 0/10 (0.0%) |
Total | 72/125 (57.6%) | 71/72 (98.6%) | 11/72 (15.3%) | 1/72 (1.4%) | 10/72 (13.9%) | 1/72 (1.4%) |
Antibiotic | N. of Resistant Strains/N. of Total Strains (% Resistance) | MIC50 | MIC90 | |||
---|---|---|---|---|---|---|
A. butzleri | A. cryaerophilus | A. skirrowii | Total | |||
n = 165 | n = 11 | n = 1 | n = 177 | |||
Ampicillin | 152/165 (92.1%) | 11/11 (100.0%) | 1/1 (100.0%) | 164/177 (92.7%) | 64 | 128 |
Ciprofloxacin | 18/165 (10.9%) | 3/11 (27.3%) | 0/1 (0.0%) | 21/177 (11.9%) | ≤0.06 | 4 |
Erythromycin | 17/165 (10.3%) | 2/11 (18.2%) | 1/1 (100.0%) | 20/177 (11.3%) | 2 | 16 |
Gentamicin | 5/165 (3.0%) | 3/11 (27.3%) | 1/1 (100.0%) | 9/177 (5.1%) | 0.25 | 2 |
Tetracycline | 146/165 (88.5%) | 2/11 (18.2%) | 0/1 (0.0%) | 148/177 (83.6%) | 8 | 16 |
MDR profile | 24/165 (14.5%) | 3/11 (27.3%) | 1/1 (100.0%) | 28/177 (15.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venâncio, I.; Martins, I.; Martins, R.M.; Oleastro, M.; Ferreira, S. Prevalence and Resistance Patterns of Campylobacter spp. and Arcobacter spp. in Portuguese Water Bodies. Water 2025, 17, 2767. https://doi.org/10.3390/w17182767
Venâncio I, Martins I, Martins RM, Oleastro M, Ferreira S. Prevalence and Resistance Patterns of Campylobacter spp. and Arcobacter spp. in Portuguese Water Bodies. Water. 2025; 17(18):2767. https://doi.org/10.3390/w17182767
Chicago/Turabian StyleVenâncio, Igor, Inês Martins, Rodrigo M. Martins, Mónica Oleastro, and Susana Ferreira. 2025. "Prevalence and Resistance Patterns of Campylobacter spp. and Arcobacter spp. in Portuguese Water Bodies" Water 17, no. 18: 2767. https://doi.org/10.3390/w17182767
APA StyleVenâncio, I., Martins, I., Martins, R. M., Oleastro, M., & Ferreira, S. (2025). Prevalence and Resistance Patterns of Campylobacter spp. and Arcobacter spp. in Portuguese Water Bodies. Water, 17(18), 2767. https://doi.org/10.3390/w17182767